AtkinsRéalis

Outline Construction Environmental Management Plan

Limerick City and County Council, in partnership with Limerick Twenty Thirty DAC

October 2025

1001172160003

CLEEVES RIVERSIDE QUARTER

Notice

This document and its contents have been prepared and are intended solely as information for Limerick City and County Council, in partnership with Limerick Twenty Thirty DAC and use in relation to the Construction Environmental Management Plan for the Cleeves Riverside Quarter Development.

AtkinsRéalis Ireland Limited assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

This document has 131 pages including the cover.

Document history

Document title: Outline Construction Environmental Management Plan

Document reference: 10117216DG0003

Revision	Purpose description	Originated	Checked	Reviewed	Authorised	Date
0	Working Draft	RG	RG	-	-	July 2025
1	Working Draft	RG/OW	RG/OW	DL	-	22/08/25
2	Working Draft	RG/OW	RG/OW	DL	-	03/09/25
3	Working Draft	RG/OW	RG/OW	DL	-	29/09/25
4	Draft	RG/OW	RG/OW	DL	-	06/10/25
5	Final	RG/OW	RG/OW	DL	-	17/10/25

Client signoff

Client	Limerick City and County Council, in partnership with Limerick Twenty Thirty DAC	
Project	Cleeves River Quarter Development	
Job number	100117216	

Client

signature/date

Contents

1.	Introd	luction	8
	1.1	Overview	8
	1.2	Purpose Of CEMP	8
	1.3	Structure	9
2.	The P	roposed Development	10
	2.1	Site Description & Current Site Setting	10
	2.2	Site History and Surrounding Land Use	10
	2.3	Proposed Development Description	13
	2.4 2.4.1	Key Stages Construction Equipment	
	2.5 2.5.1	Construction Programme and Phasing Construction Phasing and Duration	16
	2.5.2	Demolition & Construction Works and Methods	
	2.6 2.6.1	Safety, Health and Environmental Considerations During Demolition and Construction Works Noise	37
	2.6.2 2.6.3	Air QualitySoils and Geology	
	2.6.4	Water Management Plan	
	2.6.5	Ecology	
	2.6.6	Landscape and Visual Amenity	42
	2.6.7	Flood Risk	43
	2.6.8	Cultural Heritage	
	2.6.9	Traffic and Transportation	
3.	Legis	lation and Guidance	47
	3.1	Legislation	47
	3.2	Industry Guidance	49
4.	Proje	ct Roles and Responsibilities	51
	4.1	The Client/Employer	51
	4.2	Environmental Manager	52
	4.3	Construction Director	52
	4.4	Construction Manager	52
	4.5	Ecological Clerk of Works	53
	4.6	Resource Manager	53
5.	Envir	onmental Management Procedures	
	5.1	General	
	5.2	Environmental Policy	
	J		

	5.3	Environmental Aspects	55
	5.4	Training, Awareness and Competence	56
	5.5	Meetings	56
	5.6	Monitoring and Inspections	
	5.6.1	Monitoring	
	5.6.2	Inspections	
	5.7	Nonconformity and Corrective and Preventative Action	
	5.8	Reporting	
	5.9	Environmental Records	
6.		al Requirements	
	6.1	Site Safety Compliance	60
	6.2	Good Housekeeping	60
	6.3	Consents and Licenses	60
	6.4	Site Compound	61
	6.5	Hours of Working	
	6.5.1	Core Working Hours	
	6.5.2 6.5.3	Start-up and shutdown	
	6.6	Security	
	6.7	Hoarding and Fencing	
	6.8	Services and Utility	
	6.9	Material Handling and Storage	
	6.10	Lighting	
	6.11	Reinstatement of Working Areas on Completion	
	6.12	Health and safety	
	6.13	Visitor Management	
	6.14	Construction Traffic and Site Access	
	6.14.1	Construction Traffic Management	
	6.14.2	Traffic Queuing	66
7.	Enviro	onmental Management and Controls	68
	7.1	Waste & Utilities Management	
	7.1.1 7.1.2	Risk Identification	
	7.1.2	Air Quality & Climate	
	7.2.1	Risk Identification	
	7.2.2	Air Quality & Climate Management Plan	73
	7.3	Construction Noise and Vibration	
	7.3.1	Risk Identification	
	7.3.2	Noise and Vibration Management Plan	80

	7.4 7.4.1	Prevention of Soil and Water Pollution	
	7.4.2	Pollution Prevention Management Plan	
	7.5	Water Resources (and Energy Use)	
	7.5.1	Risk Identification	
	7.5.2	Water (and Energy Use) Management Plan	87
	7.6	Ecology – Natural Habitats, Flora and Fauna	
	7.6.1	Risk Identification	
	7.6.2	Ecology Management Plan	
	7.7 7.7.1	Light PollutionRisk Identification	
	7.7.2	Light Pollution Control Plan	
	7.8	Landscape and Visual	106
	7.8.1	Landscape & Visual Effects Control Plan	
	7.9	Archaeology and Cultural Heritage	108
	7.9.1	Risk Identification	
	7.9.2	Archaeology and Cultural Heritage Management Plan	
	7.10	Traffic Management	
		Traffic Management Control Plan	
	7.11	Contaminated Land	
	7.11.1	Risk Identification	
	7.11.2	Contaminated Land Control Plan	116
	7.12	Soil Erosion and Sedimentation	
		Risk Identification	
•		Soil Erosion and Sedimentation Management Plan	
8.		gency Response Plan	
	8.1	Key Requirements	
	8.2	Emergency Incidents	123
	8.3	Spill Contingency Plan	123
	8.4	Emergency Incident Response Plan	124
	8.5	Emergency Access	125
	8.6	Extreme Weather Events (including flooding)	125
9.	Refere	ences	127
T - 1-	lac		
Tab		appling of Sita History of the Droposed Davelopment	10
ıable	5 ∠- I - IVI∂	apping of Site History of the Proposed Development	10
Table	e 2-2 - Co	onstruction Phasing, and Timelines	16
Table	e 2-3 Con	struction Summary of asbestos survey findings	31
/ -		,	

Table 4-1 - Roles and Responsibilities	
Table 5-1 - Example of Qualitative Risk Matrix	55
Table 5-2 - Example of Aspects and Impacts Register	56
Table 7-1 - Example of Waste Management Risk Assessment	68
Table 7-2 – Waste & Utilities Management Mitigation Measures	69
Table 7-3 - Example of Air Quality Risk Assessment	72
Table 7-4 - Air Quality & Climate Mitigation Measures	73
Table 7-5 - Example of Noise and Vibration Risk Assessment	79
Table 7-6 - Noise and Vibration Mitigation Measures	80
Table 7-7 - Example of Soil and Water Pollution Risk Assessment	83
Table 7-8 - Surface Water Mitigation Measures	84
Table 7-9 - Example of Water Resources and Energy Use Risk Assessment	86
Table 7.10 –Water Resources and Energy Use Mitigation Measures	87
Table 7.11 – Example of Ecology Risk Assessment	94
Table 7.12 – Ecology Mitigation Measures	95
Table 7.13 – Example of Light Pollution Risk Assessment	104
Table 7.14 –Light Pollution Mitigation Measures	105
Table 7.15 – Landscape & Visual Effects Mitigation Measures	106
Table 7.16 – Example of Archaeology and Cultural Heritage Risk Assessment	108
Table 7.17 – Archaeology and Cultural Heritage Mitigation Measures	109
Table 7-18 - Example of Traffic Management Risk Assessment	114
Table 7-19 - Traffic Management Mitigation Measures	114
Table 7-20 - Example of Contaminated Land Risk Assessment	116
Table 7.21 – Example of Contaminated Land Mitigation Measures	116
Table 7.22 – Example of Soil Erosion and Sedimentation Risk Assessment	120
Table 7.23 –Soil Erosion and Sedimentation Mitigation Measures	121

Table 8.1 –Spill Mitigation Measures	.124
Figures	
Figure 1-1 - Red Line Boundary of Proposed Development	9
Figure 2-1 – Proposed Preliminary Phasing Plan – Stages 1 to 5 (refer also to Table 2-2) (prior to raising of Nort Circular Road and implementation of flood protection measures)	
Figure 2-2 - Proposed Preliminary Phasing Plan – Stages 5 to 9 (refer also to Table 2-2) (After raising of North Circular Road and implementation of flood protection measures)	19
Figure 2-3 - Construction and Logistical Considerations Stage 1 - Bat Houses	21
Figure 2-4 - Construction and Logistical Considerations Stage 2 - Demolitions and infrastructure works	22
Figure 2-5 - Construction and Logistical Considerations Stage 3 - Flood Protection Works	23
Figure 2-6 - Construction and Logistical Considerations Stage 4 - Salesians	24
Figure 2-7 - Construction and Logistical Considerations Stage 5 - Stonetown Terrace	25
Figure 2-8 - Construction and Logistical Considerations Stage 6 - O'Callaghan Strand	26
Figure 2-9 - Construction and Logistical Considerations Stage 7 - PBSA	27
Figure 2-10 - Construction and Logistical Considerations Stage 8 - Flaxmill Plaza	28
Figure 2-11 - Construction and Logistical Considerations Stage 9 - Shipyard Mobility Hub	29
Figure 2-12 - Proposed Demolition Works	33
Figure 2-13 - Tidal flooding (CFRAM study) and flow paths (shown in blue). Site boundary shown in thin red line (ARUP, 2025)	

Appendices

Appendix A - Asbestos Survey Report (Phoenix Environmental Safety Ltd, 2025).

Appendix B – Outline Construction Traffic Management Plan (AtkinsRealis, 2025)

Introduction

1.1 **Overview**

This Construction Environmental Management Plan (CEMP) has been prepared by AtkinsRéalis on behalf of Limerick City and County Council, in partnership with Limerick Twenty Thirty DAC as part of the planning application for the Proposed Cleeves Riverside Quarter Development.

Limerick City and County Council, in partnership with Limerick Twenty Thirty DAC, intends to seek the approval of An Coimisiún Pleanála in accordance with Section 175 and 177AE of the Planning and Development Act 2000, as amended, for a mixed-use development that seeks the regeneration and adaptive reuse of a strategic brownfield site, as part of the Limerick City and County Council 'World Class Waterfront revitalisation and transformation project'.

The proposed development comprises Phase II, of an overall Masterplan with four phases of development proposed. Phase II is subsequent to ongoing stabilisation and repair of the Flaxmill protected structure (Phase I) which is being undertaken in accordance with a Section 57 Declaration. Phase III is intended to comprise an educational campus, inclusive of the adaptive reuse of the Flaxmill Building as part of that development and will be subject to a future separate application. Phase IV comprising the Shipyard site will be the final phase of development.

Two structures within the site are designated protected structures; the Flaxmill Building (PS Ref no.264 & NIAH No. 21512053) and the octagonal brick chimney (PS Ref no.265 & NIAH No. 21512059), which are to be retained.

Purpose Of CEMP 1.2

The purpose of this CEMP is to describe the measures that will be implemented by the contractor to give effect to the mitigation measures described in the planning application documents to avoid, minimise and control potential adverse environmental impacts associated with the construction of the proposed project and to ensure the proposed development site is managed in accordance with best practice environmental protection, during the construction phase. The CEMP will be a key contract document that the contractor will be required to implement in full to safeguard the environment through the identification, avoidance and mitigation of the potential negative environmental impacts which are associated with the Proposed Development.

This CEMP explains the construction techniques and methodologies which will be implemented during construction of the Proposed Development.

The works Contractor will undertake the works in accordance with the provisions of the CEMP. The CEMP will be updated by the contractor in consultation with the local authority in order to give effect to any relevant planning conditions, should permission be granted.

The CEMP aims to define good practice as well as specific actions required to implement mitigation requirements as identified in the following environmental reports and documents reviewed by AtkinsRéalis:

- HRA Planning (2025), Environmental Impact Assessment Report
- ARUP (2025) Flood Risk Assessment (FRA) Report
- ARUP (2025) Construction & Demolition Resource and Waste Management Plan (CDRWMP) Report

The party responsible for the preparation of the CEMP is likely to change over the life of a project. In the absence of Irish guidelines, the UK guidelines LA 120 Environmental Management Plans, March 2020 for CEMP were followed.

1.3 **Structure**

This CEMP has been structured as follows:

- Section 1 outlines the purpose of the CEMP and introduces the proposed development/project;
- Section 2 describes in detail the proposed development/project;
- Section 3 outlines the minimum standards, legislation and guidance required of the Contractor during the development of the CEMP;
- Section 4 identifies the relevant roles and responsibilities for developing, implementing, maintaining and monitoring environmental management;
- Section 5 sets out the mechanisms through which environmental requirements will be managed;
- Section 6 sets out the general requirements of the CEMP;
- Section 7 provides a summary of minimum requirements that will be implemented by the Contractor; and,
- Section 8 sets out the procedures for the Emergency Response Plan.

Figure 1-1 - Red Line Boundary of Proposed Development

The Proposed Development

2.1 **Site Description & Current Site Setting**

The Proposed Development is ca. 5.09 hectares in size and located within the townland of Farranshone More, Limerick City, Co. Limerick.

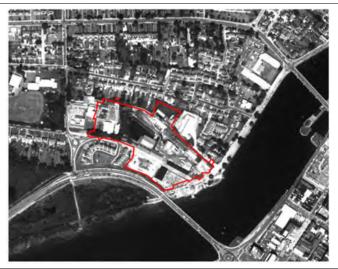
The site, known locally as 'Cleeves Riverside Quarter' comprises the former industrial mill complex ('Cleeves') situated on the northern side of the River Shannon, Limerick City and occupies the area between; Stonetown Terrace Road to the northeast; O'Callaghan Strand to the southeast; Condell Road (R527) to the southwest; and, Salesian Primary School and the 'Fernhill' residential estate to the northwest and west respectively - all situated in the townland of Farranshone More in Limerick City. The site is dissected by North Circular Road where it extends between Shelborne Road Lower and O'Callaghan Strand. The full extent of the planning application site is detailed in Figure 1-1 above.

2.2 **Site History and Surrounding Land Use**

The site history and development of surrounding lands is presented in Table 2-1

Table 2-1 - Mapping of Site History of the Proposed Development

MapGenie 1829-1841



MapGenie 1897-1913

MapGenie 1995 – The Proposed Development site outlined in red which shows development of residential and commercial areas.

MapGenie 1996-2000 – No changes to the lands within the Proposed Development or surrounding lands.

MapGenie 2001-2005 - No changes to the lands within the Proposed Development or surrounding lands.

MapGenie 2006-2012 – No changes noted within the Proposed Development or surrounding lands

MapGenie 2013-2018 - No further changes noted.

Google Maps (2025) – No further changes noted.

2.3 Proposed Development Description

The proposed development comprises Phase II, of an overall Masterplan with four phases of development proposed. Phase II is subsequent to ongoing stabilisation and repair of the Flaxmill protected structure (Phase I). Phase III is intended to comprise an educational campus, inclusive of the adaptive reuse of the Flaxmill Building as part of that development and will be subject to a future separate application. Phase IV comprising the Shipyard site will be the final phase of development.

Two structures within the site are designated protected structures; the Flaxmill Building (PS Ref no.264 & NIAH No. 21512053) and the octagonal brick chimney (PS Ref no.265 & NIAH No. 21512059), which are to be retained.

The proposed development includes:

A. Demolition of a number of structures to facilitate development including (i) Salesians Secondary School and Fernbank House; (ii) 2 no. houses on North Circular Road; (iii) Residual piers from the basin of the reservoir; (iv) Upper Reservoir on Stonetown Terrace comprising 2 no. concrete water tanks, pump house and liquid storage tank; (v) 1960's lean-to building structures adjoining the Cold Store (former Weaving Mill); (vi) remaining fabric of c20th rear lean-to of the Flaxmill Building; (vii) c.1960s office building adjoining the Packing Store and Cheese Plant on North Circular Road; (viii) Cluster of buildings including altered part of the Linen Store, the former Linen Store, Storage Building, and Office/Lab building at O'Callaghan Strand / Stonetown Terrace with partial retention of existing stone wall; (ix) warehouse on the Shipyard site; and (x) partial removal of stone boundary wall defining the Cleeves site adjoining O'Callaghan Strand / Stonetown Terrace and around the Shipyard site.

B Construction and phased delivery of:

- Residential Development in 4 development 'zones' within the site ranging in height from 3 7 storeys (with screened service plant at roof level) comprising; (a) 234 no. residential units; (b) 270 no. student bedspaces with ancillary resident services at ground floor level; (c) 299sqm of commercial floorspace; and (d) a creche. The specific development details of each proposed development zone comprise the following:
- Salesians Zone 1 no. building with 2 no. blocks extending to 6 and 7 storeys comprising 146 no. apartments (76 no. 1 bed; and 70 no. 2 bed); a creche; semi basement car and bicycle parking; reception area, plant rooms, and refuse storage, with screened external plant and photovoltaic panels at roof level; 20 no. 3 storey 3 bed triplexe units with photovoltaic panels at roof level; and 30 no. car parking spaces for the dedicated use of the adjoining Salesians Primary School.
- Quarry Zone 1 no. Purpose Built Student Accommodation (PBSA) building with 3 no. blocks extending to 6 and 7 storeys comprising 270 no. bedspaces with study rooms, shared areas, exercise room, reception area, plant rooms, refuse storage and bicycle parking all at ground floor level and screened external plant and photovoltaic panels at roof level. Provision is made for telecommunication antennae on the roof top of one block. Consent is also sought for use of the PBSA accommodation, outside of student term time, for short-term letting purposes.
- Stonetown Terrace Zone 1 no. building extending to 4 5 storeys comprising 38 no. apartments (6 no. studios; 12 no. 1 beds; and 20 no. 2 beds) with plant rooms and refuse storage at ground level, ancillary infrastructure at basement level at northern end of the block, with screened external plant and photovoltaic panels at roof level; 9 no. 3 storey 3 bed townhouses with photovoltaic panels at roof level; and a dedicated secure bicycle storage facility.
- O'Callaghan Strand Zone 1 no. building extending to 4 / 5 storeys comprising 21 no. apartments (9 no. 1 bed and 12 no. 2 bed) with an open roof structure accommodating communal open space, plant and

- photovoltaic panels; and 299gm of commercial ground floorspace intended to accommodate Class 1, Class 2 and / or Class 3 uses, with provision for car parking in the undercroft.
- ii. Dedicated mobility hub with canopy and photovoltaic panels including double stacker bicycle parking; and EV Charging spaces, within the Shipyard Zone. A dedicated pedestrian/cycle link connects North Circular Road with Condell Road. The remaining area of the zone shall accommodate temporary car parking and a temporary external event space to be used on a periodic basis as the need arises, pending future redevelopment proposals as detailed in the Masterplan (Stage IV).
- iii. Extensive provision of Public Realm including creation of the Reservoir/Quarry Park, the Flaxmill Square and the Riverside Corridor. Significant areas of civic and green spaces are provided, incorporating formal and informal play space; nature based SuDs, permeability and access; and a riverside canopy with photovoltaic panels functioning as an outdoor event space and incorporating heritage interpretative panels
- i۷. 3 no. dedicated bat houses;
- Telecommunication antennae on roof of Block 2A of the PBSA, including (a) 9 no. Support poles to support ٧. 2 no. antennae each; (b) 6 no. microwave dishes affixed to the plant screen; and (c) associated telecommunications equipment and cabinets (effectively screened). To facilitate technologically acceptable locations at the time of delivery, a micro-siting allowance of 3m is proposed on the roof top of Block 2A of the PBSA for the infrastructure.
- vi. Provision of vehicular access/egress points including (a) utilisation of existing access points to the Salesians Zone, to the Flaxmill and Quarry Zones and to the Mobility Hub on the Shipyard Site Zone; (ii) reopening an existing (currently blocked) access point off O'Callaghan Strand; (iii) new access points to the proposed undercroft carparking at Salesians from the North Circular Road and at the end of Stonetown Terrace road which provides access to the Stonetown Terrace Zone; and (iv) emergency access only from Stonetown Terrace to the Flaxmill Zone;
- vii. Provision of 30 no. dedicated car parking spaces to serve the Salesians Primary School; and
- viii. All ancillary site development works including (a) water services, foul and surface water drainage and associated connections across the site and serving each development zone; (b) attenuation proposals; (c) raising the level of North Circular Road between Fernhill and O'Callaghan Strand; (d) refuse collection store (e) car and bicycle parking to serve the development; (f) public lighting; (g) all landscaping works.; and (h) temporary construction measures including (i) construction access to the Quarry site including provision of a temporary access across the reservoir; and (ii) temporary use of onsite mobile crusher.

2.4 **Key Stages**

The development is structured into nine distinct but overlapping stages. Depending on market conditions and delivery mechanisms, some stages may progress more quickly or slightly ahead of others, as detailed further in Section 2.5. Therefore it is possible that several contractors will be working on the proposed development site at the same time, depending on the final procurement process.

At this preliminary stage, the proposed development will involve the following key work stages:

- Appointment of the Contractor(s);
- Detailed Design Stage;
- Site preparatory works including the preparation of all required Detailed Safety and Health, and Environmental Management documents;
- Construction of Bat Houses:
- Site mobilisation:

- Site Demolition and Enabling Works;
- Construction Stage (including flood protection works);
- Completion;
- Demobilisation; and,
- Operational Stage.

Construction Equipment 2.4.1

Details of machinery to be used on site will including the following standard site equipment:

- Tracked excavators / JCBs:
- Wheel Loaders:
- Bulldozers:
- Compact Track Loaders;
- Articulated Trucks;
- Tower Cranes (Mobile and / or Fixed);
- Dump Trucks;
- Excavators:
- Mobile Concrete Crusher;
- Piling Rig(s);
- Mobile pumps / generators;
- Power tools.

This is a non-exhaustive list and the equipment used onsite will depend on the specific construction phasing and methodology to be implemented by the Contractor(s) once appointed.

Construction Programme and Phasing 2.5

As previously noted, depending on market conditions and delivery mechanisms, some of the 9no. distinct (but overlapping stages) may progress more quickly or slightly ahead of others. Refer to Table 2-2. Therefore it is possible that several contractors will be working on the proposed development site at the same time, depending on the final procurement process. It is also noted that the final programme will potentially involve delivery of individual plots / zones independently within the development site boundary. Accordingly a preliminary strategy for delivery of individual plots / zones independently has been developed and is discussed in further detail below.

It is estimated that there will be 100-150 (max.) staff present within the development site, per stage, during peak construction. Therefore, if two stages were to advance concurrently, this could potentially result in up to 300 (max.) staff present. Site staff will include; management, engineers, construction crews, supervisors, environmental health and safety personal, and maintenance contractors.

Site development and building works will only be carried out between the hours of 07:00 to 18:00 Mondays to Fridays inclusive and between 08:00 and 14:00 hours on Saturdays. However, it is possible that the contractor may wish to carry out certain operations outside these hours i.e. Sunday or evening hours during long summer days etc. Such occurrences will be kept to a minimum and take place over a short timeframe and as such are unlikely to cause excessive disturbance. Deviation from these times will only take places when written approval is granted by LCCC in exceptional circumstances.

If a grant of planning is received, the construction activities on site will commence in Q1 2027 with construction of bat houses. It is anticipated the Proposed Development will be completed in 2030. Refer to Table 2-2 for breakdown of Phasing timelines.

The development is structured into nine distinct but overlapping stages. Depending on market conditions and delivery mechanisms, some stages may progress more quickly or slightly ahead of others. For instance, Stage 8 is a priority for early delivery, as it will significantly enhance the site's appearance and help establish Cleeves as an attractive place to live, work, and enjoy leisure activities. Therefore, Stage 8 may begin earlier than planned, depending on the progress of Stages 6 and 7.

2.5.1 Construction Phasing and Duration

The construction phasing and timelines for each stage (Stage 1 to Stage 9) of the proposed development is presented below.

Table 2-2 - Construction Phasing, and Timelines

Stage	Description	Estimated Start and End	Construction Duration (months)
Stage 1	Construction of Bat Houses - A 3-month period is allocated exclusively to this stage to allow bats on-site to adjust to their new accommodation. No other construction activity will overlap with this stage.	Q1 2027	3months
Stage 2	Site Demolition and Enabling Works - This stage involves demolishing identified buildings and structures to facilitate development and installing enabling drainage infrastructure across the Flaxmill area. Temporary surface treatments will be applied to support access to the upper-level sites (Salesians and Stonetown). Asbestos removal, pre-condition surveys and removal of contaminated soils across the development will be undertaken during this stage of works.	Q2 2027 – Q2 2028	12-15months
Stage 3	Flood Protection Works - Raising the North Circular Road and implementing other flood protection measures will occur concurrently with Stage 2 and is expected to take 15 months.	Q2 2027 – Q2 2028	15months
Stage 4	Salesians Zone Development - Construction of apartments and townhouses, along with local public realm and communal open spaces, will begin midway through Stage 2	Q1 2028 – Q4 2029	18-24months
Stage 5	Stonetown Terrace Zone Development - This stage will likely begin alongside Stage 4 and take 15–18 months. Given its timeline, Stonetown Terrace is expected to be the first zone ready for occupation	Q1 2028 – Q2 2029	15-18months
Stage 6	O'Callaghan Strand Zone Development - Construction of apartments in this zone will begin midway through the Stonetown Terrace works and is expected to take 15 months, likely completing before the Salesians Zone	Q3 2028 – Q3 2029	15months

Stage 7	Quarry Zone PBSA and Public Realm - This stage includes the construction of Purpose-Built Student Accommodation (PBSA) and associated amenities, as well as public realm improvements around the reservoir.	Q3 2028 – Q2 2030	24months
Stage 8	Flaxmill Plaza and Riverside Public Realm - Delivery of Flaxmill Plaza and riverside canopy works is anticipated to take 15 months. This stage will begin after the completion of Stonetown Terrace but before the Salesians Zone is finished. Completion is expected to align with the PBSA	Q2 2029 - Q2 2030	15months
Stage 9	Shipyard Mobility Hub - The final stage involves constructing the Mobility Hub on the Shipyard site, along with associated site works. This will commence once all other stages are complete and is expected to take 6 months	Q3 2030 - Q4 2030	6months

Refer to Figure 2-1 and Figure 2-2 for the general Phasing Plan of the Proposed Development, before and after the raising of North Circular Road and implementation of flood protection measures.

The development is structured into nine distinct but overlapping stages. Depending on market conditions and delivery mechanisms, some stages may progress more quickly or slightly ahead of others. For instance, Stage 8 is a priority for early delivery, as it will significantly enhance the site's appearance and help establish Cleeves as an attractive place to live, work, and enjoy leisure activities. Therefore, Stage 8 may begin earlier than planned, depending on the progress of Stages 6 and 7.

Maintaining flexibility in the delivery sequence is essential to ensure the development can adapt to changing market conditions. The anticipated sequence of stages is outlined below.

- . Stage 1 Construction of Bat Houses, A 3-month period is allocated exclusively to this stage to allow bats on-site to adjust to their new accommodation. No other construction activity will overlap with this
- Stage 2 Site Demolition & Enabling Works: This stage involves demolishing identified buildings and structures to facilitate development and installing enabling drainage infrastructure across the Flaxmill area. Temporary surface treatments will be applied to support access to the upper-level sites (Salesians and Stonetown). This stage is expected to take 12-15 months
- Stage 3: Flood Protection Works: Raising the North Circular Road and Implementing other flood protection measures will occur concurrently with Stage 2 and is expected to take 15 months. These works must be completed before any residential units are occupied...
- Stage 4: Salesians Zone Development: Construction of apartments and to Construction of apartments and townhouses, along with local public realm and communal open spaces, will begin midway through Stage 2. This stage is expected to take 18-24 months.
- Stage 5: Stonetown Terrace Zone Development: This stage will likely begin alongside Stage 4 and take 15-18 months. Given its timeline, Stonetown Terrace is expected to be the first zone ready for occupation.

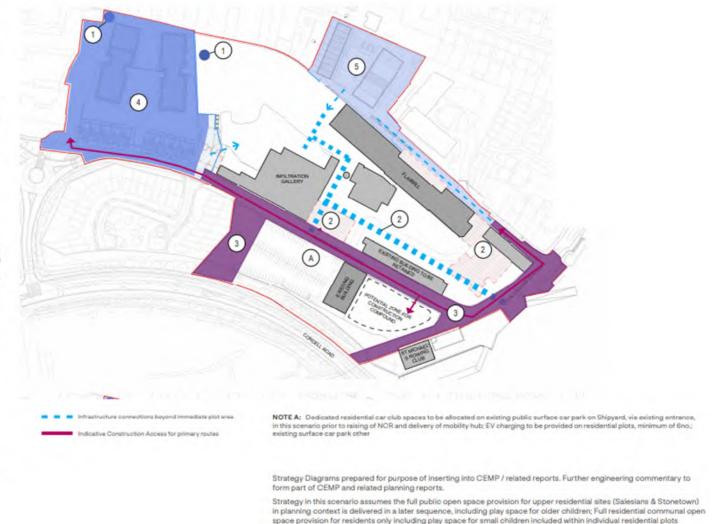


Figure 2-1 – Proposed Preliminary Phasing Plan – Stages 1 to 5 (refer also to Table 2-2) (prior to raising of North Circular Road and implementation of flood protection measures)

- Stage 6: O'Callaghan Strand Zone **Development:** Construction of apartments in this zone will begin midway through the Stonetown Terrace works and is expected to take 15 months, likely completing before the Salesians Zone.
- Stage 7: Quarry Zone PBSA and Public Realm: This stage includes the construction of Purpose-Built Student Accommodation (PBSA) and associated amenities, as well as public realm improvements around the reservoir. It is expected to take 24 months.
- Stage 8: Flaxmill Plaza and Riverside Public Realm: Delivery of Flaxmill Plaza and riverside canopy works is anticipated to take 15 months. This stage will begin after the completion of Stonetown Terrace but before the Salesians Zone is finished. Completion is expected to align with the PBSA.
- Stage 9: Shipyard Mobility Hub: The final stage involves constructing the Mobility Hub on the Shipyard site, along with associated site works. This will commence once all other stages are complete and is expected to take 6 months

Figure 2-2 - Proposed Preliminary Phasing Plan - Stages 5 to 9 (refer also to Table 2-2) (After raising of North Circular Road and implementation of flood protection measures)

2.5.1.1 Logistical and Construction Considerations (Stage 1 to 9)

The final construction strategy will potentially involve delivery of individual zones independently within the development site boundary. A preliminary strategy for delivery of individual zones independently has been developed. Logistical and construction considerations for each of the 9no. stages are presented in Figures 2-3 to 2-11. Such considerations include access / egress, location of site compounds, identification of flood zones, site hoarding as well as specific construction activities which will be required to facilitate the development at each key stage.

Subject to detailed planning at the construction stage, it will be the responsibility of each site contractor to assign the location of the site compound for each zone (as required). These compounds will be removed from any environmentally sensitive receptors. The final locations for proposed site office and welfare facilities will be confirmed in advance of the commencement of site works and will be agreed on by the Client and LCCC.

It is anticipated that the site office and welfare facilities (site compounds) will likely be located on the Shipyard site for most phases, with development in the O'Callaghan Strand Zone and in the Quarry Zone accommodating independent site compounds, following construction of the Mobility Hub within the Shipyard site. Refer to Figures 2-3 to 2-11. Further details in relation to specific vehicular construction access / egress are provided in Section 6.14 Construction Traffic and Site access.

All subcontractors as well as the main contractor and project managers will occupy offices within the construction compound. The site parking for all staff, contractors and visitors will also be located in this area.

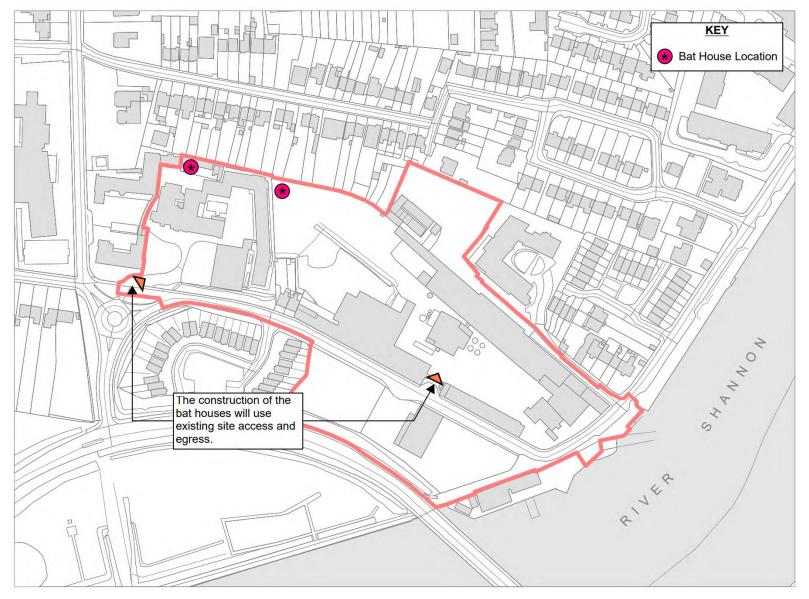


Figure 2-3 - Construction and Logistical Considerations Stage 1 - Bat Houses

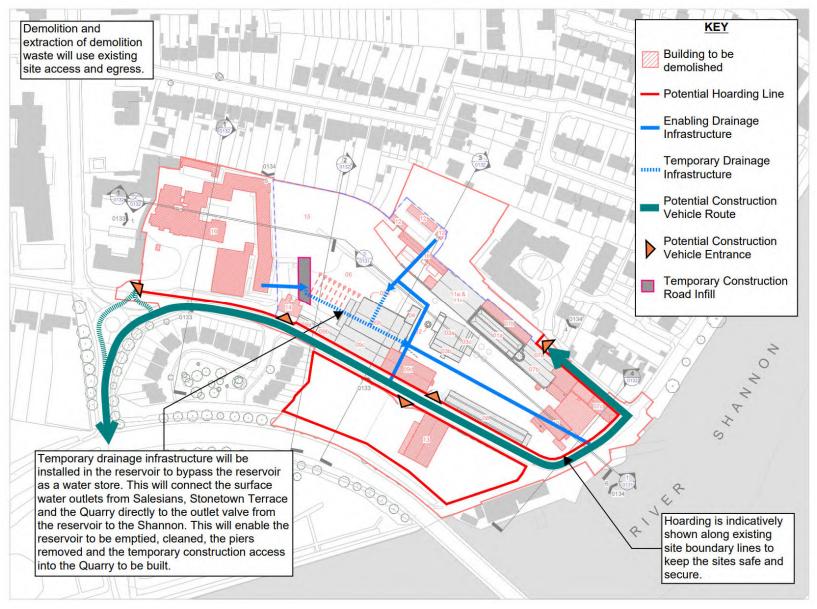


Figure 2-4 - Construction and Logistical Considerations Stage 2 - Demolitions and infrastructure works

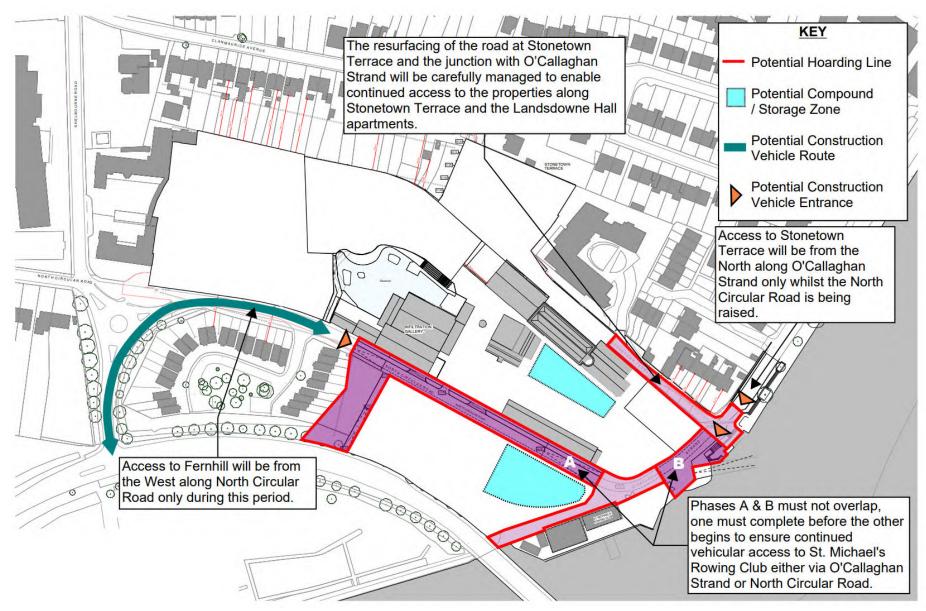


Figure 2-5 - Construction and Logistical Considerations Stage 3 - Flood Protection Works

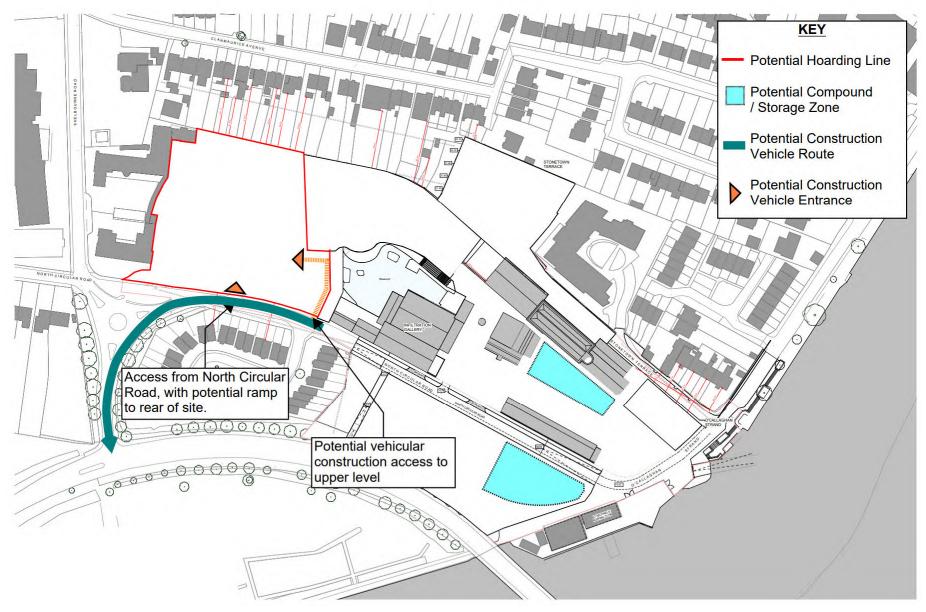


Figure 2-6 - Construction and Logistical Considerations Stage 4 - Salesians

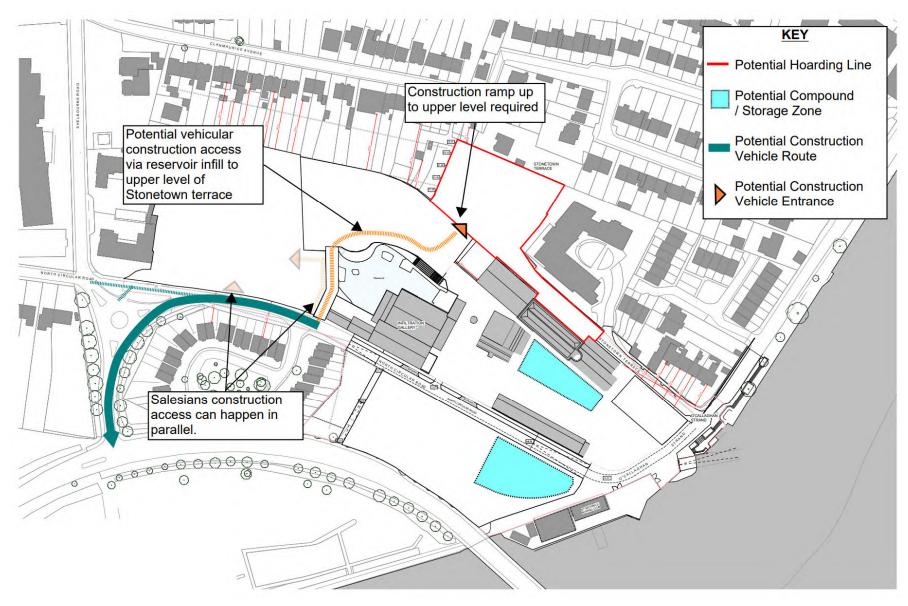


Figure 2-7 - Construction and Logistical Considerations Stage 5 - Stonetown Terrace

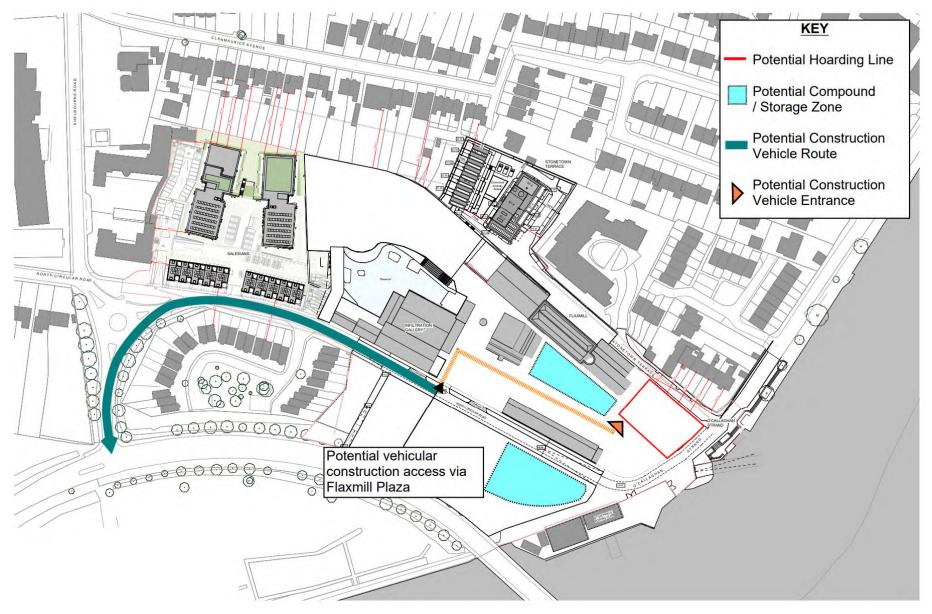


Figure 2-8 - Construction and Logistical Considerations Stage 6 - O'Callaghan Strand

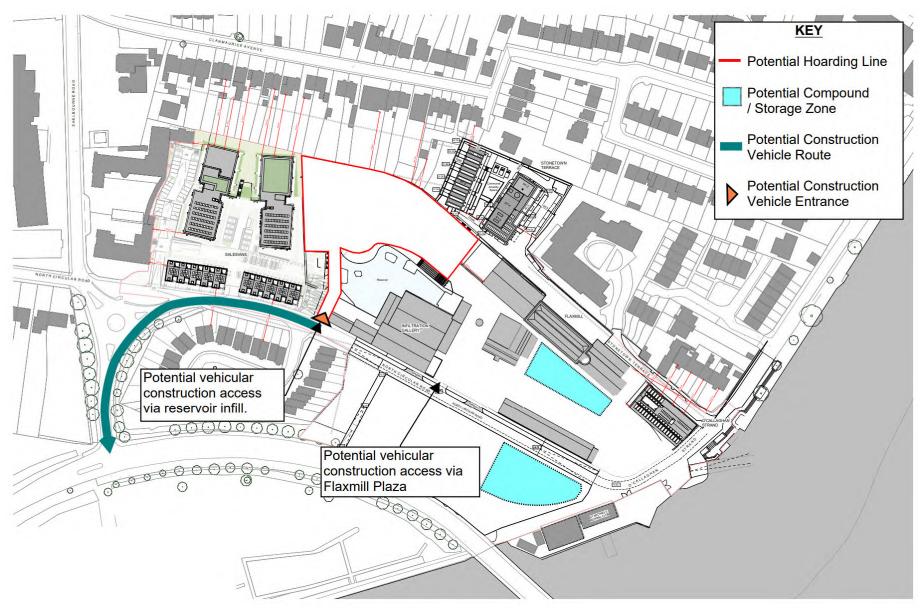


Figure 2-9 - Construction and Logistical Considerations Stage 7 - PBSA

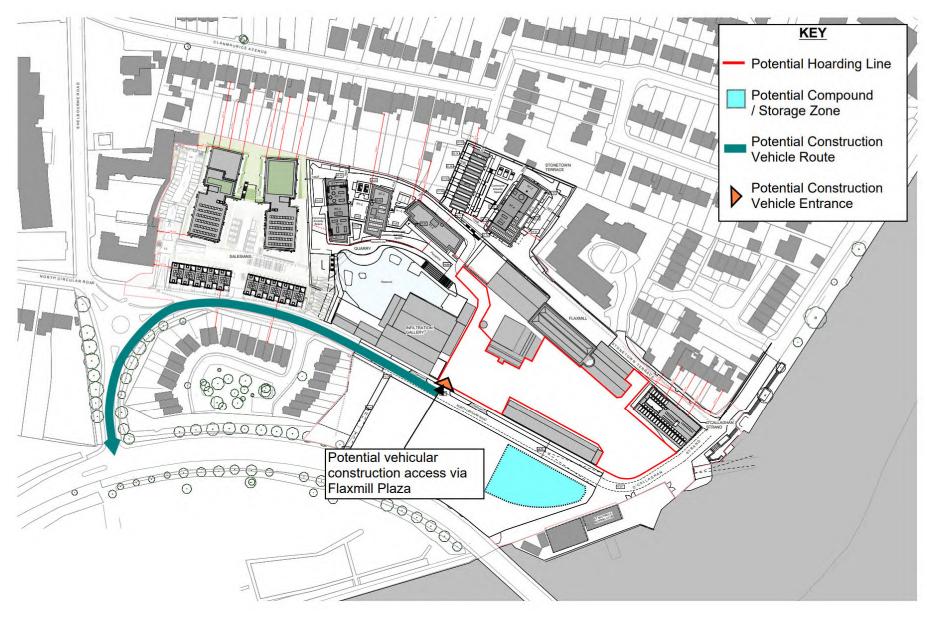


Figure 2-10 - Construction and Logistical Considerations Stage 8 - Flaxmill Plaza

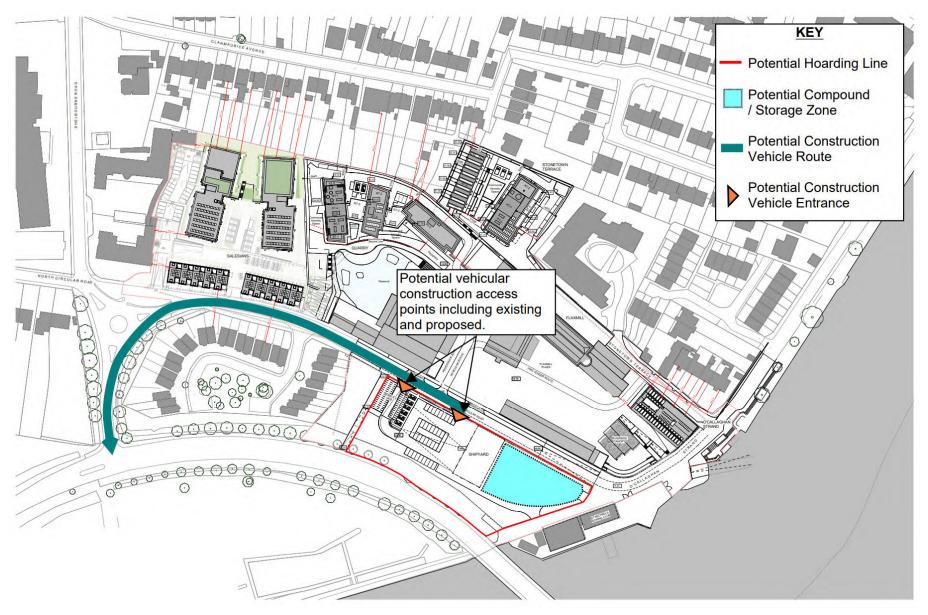


Figure 2-11 - Construction and Logistical Considerations Stage 9 - Shipyard Mobility Hub

2.5.2 Demolition & Construction Works and Methods

Site Establishment and Security

The first activity to be carried out at the site will be the establishment of the site facilities and security. The site office and welfare facilities (site compound) will likely be located on the Shipyard site for most phases, with development in the O'Callaghan Strand Zone and in the Quarry Zone accommodating independent site compounds, following construction of the Mobility Hub within the Shipyard site. All the subcontractors as well as the main contractor and project managers will occupy offices within the construction compound. The site parking for all staff, contractors and visitors will also be located in this area.

Erection of perimeter hoarding will take place at the start of the project alongside the site establishment and security works. The hoarding will be installed around each stage of development, except for dedicated access points. The extent of hoarding will be subject to detailed site sequencing of the development proposal and will ensure that areas under construction will be fenced off at all times. Gates will be provided at the access points and will be locked outside of working hours. Hoarding will consist of solid painted plywood on a timber frame or similar. Hoarding will be properly designed to be secure and durable and will be maintained until it can be dismantled on completion of the development (or stages of the development).

Site Access and Egress

The proposed haul route for demolition waste and construction materials and plant will be from the N18, via the Clonmacken Roundabout and the R527 Condell Road. This route ensures that construction traffic will avoid the city centre and residential areas. Banks persons will be deployed for extra-long deliveries and as specified in the contractor's construction management plan.

The construction trip generation has been compared against the existing traffic flows on the Salesians roundabout. It is expected that there will be no more than 20 additional construction vehicular trips per hour (10 in / 10 out). For robustness purposes, it has been assumed that 100% of construction vehicles travel through the Salesians roundabout. The construction traffic uplift results in a 2% increase in flows through the Salesians roundabout during the AM and PM peak periods. This is considered to be a marginal uplift, especially considering the robust trip generation assumption and the temporary nature of construction traffic.

Within the necessary constraints of performance, durability and cost, construction materials will be sourced from local suppliers and manufacturers, where possible. Transport of materials to site shall be carried out in accordance with the Contractor's Traffic Management Plan (TMP) with HGV's using designated haulage routes and timing of deliveries if necessary to avoid peak traffic periods. The construction phase of the proposed development will result in additional traffic on the roads in the vicinity of the development. Additional vehicles will comprise heavy goods vehicles, fuel trucks and light goods vehicles. The proposed haul route will be utilised by all construction related HGVs.

Site Clearance

To facilitate the earthworks operation, site clearance will have to be carried out to remove vegetation. No removal of habitats will occur outside of the masterplan area during the construction phase. Site clearance to facilitate the construction phase of the proposed development will be undertaken outside of the nesting bird season (1st March – 31st August) to ensure compliance with the Wildlife Act. Vegetation clearance of non-native species and ivy in proximity of the soprano pipistrelle roost identified within the quarry walls will be avoided, where unjustified. If vegetation clearance is required in this area, it will be carried out outside the bat activity season (April-October) and all clearance works supervised by an appropriately qualified ecologist to ensure that:

- All vegetation removal is justified
- The removal does not damage the existing roost crevice

Temporary surface water management measures will be put in place prior to site clearance and stripping and will remain in place until the completion of the development, or until the completion of each stage / phase.

Demolition and Enabling Works

Significant demolition is proposed as detailed in Figure 2-12 Error! Reference source not found. to enable the regeneration and redevelopment proposal. Given the site's industrial legacy and the age of existing structures, there is a significant risk of encountering asbestos-containing materials (ACMs), which pose both environmental and human health hazards. Asbestos is a regulated hazardous material, and its presence directly influences waste classification and the mitigation measures required during redevelopment.

To establish a comprehensive understanding of Asbestos distribution and condition across the site, 2no. asbestos surveys were undertaken by Phoenix Environmental Safety Ltd. in 2015 and 2024. These surveys have informed the waste management strategy and health and safety planning for the proposed works. A summary of the findings is presented in Table 2-3 below.

Table 2-3 Construction Summary of asbestos survey findings

Aspect	2015 Survey	2024 Survey	
Purpose	Initial baseline prior to	Reassessment post partial	
	redevelopment	demolition/remediation	
Scope	Non-intrusive inspection of derelict	Refurbishment /demolition -focused	
	buildings	survey across the full site	
Buildings with ACMs	Most buildings except buildings 13,	Most buildings except buildings 6,	
	18 and 191	18, 18 and 192	
Common ACMs identified	Cement sheeting, insulation board,	Cement sheeting, insulation board,	
	rope seals, floor tiles, CAF gaskets	thermal insulation, felt, paper, rope	
		seals, CAF gaskets	
Extent of ACMs	Widespread across roofs, ceilings,	More detailed and extensive,	
	and pipework	including internal debris and	
		concealed materials	
New findings	Not applicable/Baseline	ACMs under floor coverings,	
-		thermal insulation residues,	
		asbestos felt, and presumed ACMs	
		in inaccessible areas	

According to Phoenix Environmental Safety Ltd (2025) the following tasks are required to be completed in advance of commencement of any demolition works:

- Asbestos containing materials will be removed prior to the commencement of any works;
- A licensed asbestos removal contractor will be contracted for removal and disposal of asbestos waste; and,
- All asbestos removal works shall be undertaken in full compliance with the Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006–2010 (S.I. No. 386 of 2006).

Refer to the full Phoenix Environmental Safety Ltd (2025) report in Appendix A for all asbestos related recommendations. The Contractor(s) will be required to ensure that all such recommendations are complied with.

Once all asbestos has been removed from site, proposed demolition works comprise the following scope:

² Asbestos Survey report 2024. Summary of Findings

AtkinsRéalis - Baseline / Référence

¹ Asbestos Survey report ,2015.Summary of findings

- Salesians Site The totality of the Salesians school and Fernbank House are to be demolished to enable construction of 146 no. apartments, 20 no. townhouses and a creche, with 1,033sqm of communal open space and car parking. The existing 2 3 storey structure, with a total estimated building footprint of 3,395sqm wraps around the perimeter of the school site, with car parking dispersed throughout and no notable external amenity space. Demolition of the building is necessary to facilitate compact growth and the provision of apartment units in compliance with the Sustainable Urban Housing Design Standards for New Apartments 2025. It is proposed to undertake Building Recording of Fernbank House only having regard to its historic fabric.
- Quarry Site Two Victorian Houses fronting onto North Circular Road are to be demolished to facilitate pedestrian and cycle access to the Cleeves site, and in particular, the public amenity offering provided by the reservoir in the Quarry area. This access also facilitates the only pedestrian / cycle connectivity point between the Cleeves and Salesians site, thereby enhancing permeability within the development. The two storey houses have a total estimated building footprint of 148sqm. It is proposed to undertake Building Recording having regard to their historic fabric.
- Stonetown Terrace Site It is proposed to demolish the Upper Reservoir at Stonetown Terrace. This includes the two concrete water tanks (approximately 3m deep), pump house and liquid storage tank. There is a suspended RC walkway over the tanks that is in poor condition and has failed at one section. The pump house has a roof covered with asbestos sheets and a small masonry storage building beside the tanks is covered in asbestos sheeting. A masonry walled building with a timber truss roof and rusted tin sheet roofing is also to be demolished (total estimated building footprints: 246sqm). The building is two storeys from the lower Flaxmill Plaza part of the site and one storey from the higher Stonetown Terrace. This demolition will facilitate the construction of 36 no. apartments, 9 no. townhouses with 413sqm of communal open space and associated car parking. Further, demolition of mid and late c.20th building structures adjoining the Cold Store (former Weaving Mill) is necessary to facilitate pedestrian / cycle connectivity between Stonetown Terrace and the Flaxmill and Quarry Zones. The historic elements of the building are to be retained including the southwest facing elevation.
- Flaxmill Plaza Site The c20th rear lean-to of the Flaxmill Building (total estimated building footprint: 295sqm) is to be demolished. The upper storey and roof shall be demolished as part of stabilisation and repair works to the Flaxmill undertaken as part of Phase I of the Masterplan. The remaining ground floor of the extension is to be demolished to provide for access to the upper site from Stonetown Terrace. c.1960s office building adjoining the Packing Store and Cheese Plant on North Circular Road is to be demolished (total estimated building footprint: 639sqm), with retention of earlier surviving fabric, including an earlier stone built single storey element that addresses the North Circular Road inclusive of the most western bay of the south facing elevation. The roof covering of this building appears to comprise asbestos sheeting.
- O'Callaghan Strand Site Comprising a cluster of 4 no. buildings, the Linen Store & Offices / Dairy Buildings (total estimated building footprint: 1,630sqm) at O'Callaghan Strand / Stonetown Terrace will have selected demolition. The roof, walls and slab of the Linen Store are to be demolished, with retention and reuse of the external stone walls onto Stonetown Terrace and O'Callaghan Strand. The offices are to be retained, whilst the much altered single storey dairy building between the linen store and offices is to be demolished with the wall onto Stonetown Terrace to be retained. Later c20th flat and shallow pitched roof structure to be demolished. The boundary walls are to be retained with some additional openings added. These demolition works are necessary to facilitate the construction of 21 no. apartments and 256sqm of commercial floorspace intended to activate the Flaxmill Plaza. This demolition will also facilitate vehicular emergency access from Stonetown Terrace to the Flaxmill Plaza and North Circular Road in the event of a flood.
- Shipyard Site It is proposed to demolish the 1990s reinforced concrete structure on the Shipyard Site with a total estimated building footprint of 687sqm.
- Residual piers will also be removed from the basin of the reservoir.

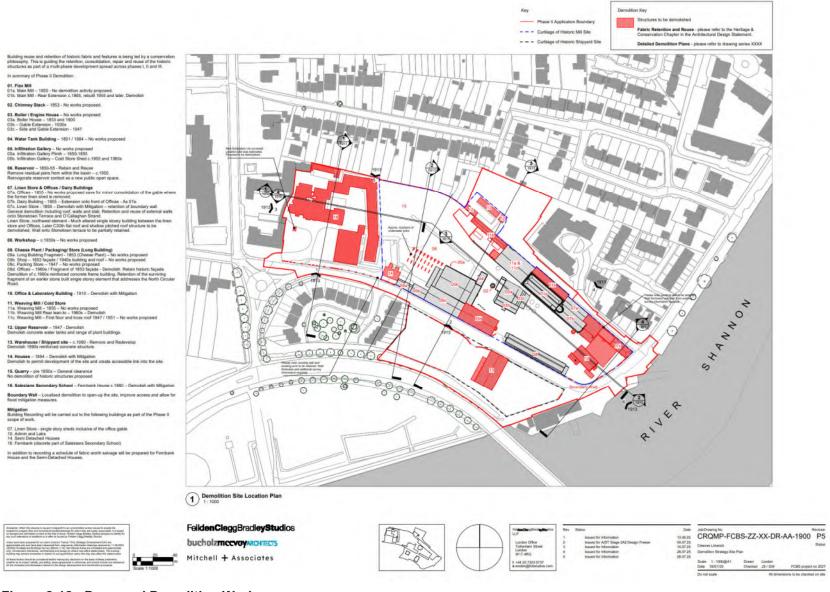


Figure 2-12 - Proposed Demolition Works

Earthworks

A project-specific ground investigation (GI) was undertaken at the proposed development site by Priority Geotech Limited (PGL) from March to May 2025. The Ground Investigation Summary Report prepared by ARUP provides a summary of the findings of this GI, as well as previous GI undertaken at the site.

The stratigraphy of the site has been described as topsoil (one borehole) and made ground (surfacing material) composed of bituminous surfacing and concrete hardstanding underlain by made ground (fill material) composed of historical fill material, construction and demolition waste, and reworked subsoil material with anthropogenic material. Bedrock level is variable across the site, from 0.7 to 14.5 m BGL. This will necessitate rock ripping / breaking.

As part of the 2025 GI, geoenvironmental testing using Waste Acceptance Criteria (WAC) was undertaken of 61 no. samples from the site. This testing has demonstrated that there is a variable contamination risk across the site. Based on the soils analytical data (presented in further detail in Chapter 10 of the EIAR), 8no. contaminants of potential concern with regards to human health risk have been identified within the soils and made ground beneath the Site, summarized as follows:

- Asbestos Containing Material (ACM) in the form of Fibre/Clumps identified in 3no. samples (BH308, BH305 and BH306).
 Asbestos was also identified in 2no. samples (BH305 and BH306).
- Arsenic: Exceedances (with respect to the relevant soils Generic Assessment Criteria (GAC) were identified in 3no. samples (TP309, TP321 and BH309).
- Lead: Exceedances were identified in 11no. samples (BH307, BH311, BH310, TP303, TP322, TP317, TP320, TP321, BH309, and TP318)
- Benzene: One exceedance was identified at BH314.
- Naphthalene: One exceedance was identified at TP321.
- Fluoranthene: One exceedance was identified at TP321.
- Benzo[a]pyrene: Exceedances were identified in 4no. samples (BH311, TP303 and TP321).
- Total Petroleum Hydrocarbons (TPH): Potential sources of TPH measured by the presence of PAHs in the soil were identified in 3no. samples (BH311, and TP321).

However the above exceedances are either:

- i) located within portions of the site where made ground / soils will require excavation (including ACM detections) and removal from site during the site enabling phase (and are included in the waste soil classification assessment completed, and within the presented cut and fill volumes) (refer to mitigation measures in Chapter 10 of the EIAR), or
- ii) located at depth beneath the Shipyard Zone of the proposed development, where no residential development is proposed.

During the construction phase, excavated materials will be generated to achieve the required formation levels, for building foundations and substructures, internal road network and parking areas, and installation/diversion of site services and utilities. It is provisionally estimated that approximately 46,100m3 (or 98,120 tonnes) of excavated material will be generated. The made ground is considered unlikely to be suitable for reuse and all of this material is expected to require off-site disposal (26,800m3 or 50,920 tonnes). The excavated subsoils and rock are likely to be suitable for reuse, comprising 19,300m3 (or 47,200 tonnes).

Excavation of shallow bedrock will be undertaken during the works. At this preliminary stage it is understood that rock breaking will be required. Piling at specific locations (including Stonetown Terrace) will also be required. Refer to the Structural Report (ARUP, 2025) submitted as part of this planning application for further details. Excavated rock will be subject to crushing onsite (for site reuse) via mobile crusher.

Temporary concrete crushing activity will be carried out by the Contractor(s) in accordance with the requirements of Limerick City and County Council / EPA, ensuring that all required statutory permits / licences (Waste Facility Permit,

Certificate of Registration, or EPA Licence) are in place prior to commencement of such operations, and compliance of same during the relevant period of works.

Construction of Buildings and Townhouses

On completion of the bulk earthworks, construction of remaining building rising elements and/ or foundations for the buildings will commence. The exact construction sequence has not been determined, but it will be similar to what is described below:

- Completion of foundations and rising elements
- Construction of ground floor
- Erection of reinforced concrete frame
- Construction of floors and roof slab and rising elements between levels
- Facades
- Fit out

As detailed in the Structural Planning Report prepared by ARUP, the borehole, trial pit and probe data indicates that pad foundations and strip footings will be used to support superstructure walls and or columns and core walls. Lean mix upfill will be required from the underside of the pad foundations down to competent bearing stratum or rock. The only building that will require a piled solution is the Stonetown Terrace Apartments. Ground beams, pile caps and cores supported by piles are proposed for this building. Shallow pad foundations bearing on the shallow limestone bedrock are the likely foundation solution for structures in the Salesian's Zone, Quarry Zone and O'Callaghan Strand Zone portion of the site.

A brief description of the typical methodology for each foundation type is provided as follows:

- During the construction phase, pad and strip foundations will be built by first excavating the site to the required depth, followed by setting out and installing formwork to hold the shape of the foundation. Steel reinforcement is placed within the formwork, and concrete is poured to fill the trenches or pits. After the concrete cures, the formwork is removed, and the foundation is backfilled.
- Bored piles are carried out where the removal of spoil forms a hole for a reinforced concrete pile which is poured in situ. They are drilled using buckets and/or augers driven by percussion boring which involves a cutting tool which is dropped using a winch to cut out a cylinder of earth. The operation is repeated until the hole has been sunk to the required depth. At the required depth, concrete is poured using a tremie pipe method and the reinforcement is lowered into the concrete. As the concrete reaches the hole's upper level, the temporary casing is withdrawn.

Shallow pad foundations bearing on the glacial subsoils or shallow pile foundations bearing in the underlying competent limestone bedrock are the likely foundation solutions for structures in the Stonetown Terrace portion of the site.

Groundwater levels range from 2.5m (Salesian Apartments) to 6.6m (Stonetown Terrace) below FFL (based on available information during preliminary design stage); however according to ARUP (2025) groundwater levels vary seasonally and are likely to be 0.5 to 1.0 metres higher during winter months3. Continuous groundwater level monitoring is ongoing (CRQMP-ARUP-ZZ-ZZ-RP-S-0001) (ARUP, 2025). Groundwater control will be required for the proposed bored piles at Stonetown Terrace Apartments

³ Groundwater strikes encountered during the PGL 2025 GI and subsequent groundwater level monitoring in standpipe installations, indicate that there is a low probability for groundwater ingress into excavations across the site. Continuous groundwater level monitoring is ongoing to determine tidal and seasonal fluctuations in the groundwater regime (CRQMP-ARUP-ZZ-ZZ-RP-S-0001) (ARUP, 2025).

The existing heritage wall around the proposed O'Callaghan Strand building is proposed to be partially retained. The proposed foundation structure will be set back to avoid undermining or interacting with the existing heritage wall foundations. The proposed solution is to incorporate a series of ground beams which will extend to the perimeter to pick up the edge/corner columns, thus, allowing the pad footings to be set back circa 2.0m from the existing heritage wall.

Different structural schemes were considered for the apartment blocks, mindful of the need for future flexibility, to accommodate unforeseen circumstances and market conditions. Based on existing market and pricing circumstances, an in-situ structural scheme is proposed for all buildings, with the exceptions of the building on the Salesians site which will be pre-cast, using pre-manufactured concrete components to construct the building's framework. In the case of the PBSA on the Quarry site, components of the block will likely use pre-cast including longer span areas, linking the blocks.

Cranage

Cranes will be required on site. Mobile and/or fixed cranes will be used for some activities. All materials being lifted by crane will be controlled by guide ropes and will only be carried out under the strict supervision of appropriately qualified and experienced banksmen.

Biosecurity Measures

Topsoil will be stripped from areas to be developed, as necessary (and temporarily stockpiled in areas away from the identified flood risk zone), although given the brownfield nature of the site, this process will only be applicable to limited areas, as detailed within Chapter 5 – Biodiversity of the EIAR.

Japanese knotweed and Himalayan Knotweed have been recorded within the Application Site. An invasive species management plan has been prepared. The Contractor(s) will be required to ensure that all requirements as set out in the An invasive species management plan are complied with

All of the identified Japanese knotweed within the proposed development site will continue to be treated and any remaining contaminated soil will be removed from site to a licenced waste facility prior to construction works commencing. In the same way, any contaminated soil in proximity of the Shipyard found to be contaminated with Himalayan knotweed will be removed prior to any earthworks in this area. There is a responsibility on the Environmental Manager or Ecological Clerk of Works (ECoW) to regularly inspect and supervise maintenance of the environmental controls throughout the process.

Monitoring During Construction

Appropriate environmental monitoring requirements are detailed in Section 7 of this CEMP.

Construction Waste

Measures shall be undertaken to minimise the quantity of waste produced at the site and to handle the waste in such a manner as to minimise the effects on the environment. A CDRWMP has been prepared to ensure sustainable and effective waste management throughout the construction and demolition phases of the project. It will ensure that the management of waste arising is dealt with in compliance with the provisions of the Waste Management Acts 1996 – 2015 and amendments.

The waste management hierarchy to be adopted will be as follows:

- Prevention and Minimisation
- Reuse of Waste
- Recycling of Waste:
- Disposal

Refer to Section 2 for proposed site compound location options, for each stage of the development, as presented in Figures 2.3 to 2.11. A dedicated and secure area containing bins, and/or skips, and storage areas, into which all waste materials generated by construction site activities, will be established at each stage within the development.

Waste materials generated will be segregated at the site compound, where it is practical to do so. Where the on-site segregation of certain waste types is not practical, offsite segregation will be carried out. There will be skips and receptacles provided to facilitate segregation at source. All waste receptacles leaving site will be covered or enclosed. The appointed waste contractor will collect and transfer the wastes as receptacles are filled.

The site Construction Manager will ensure that all staff are informed of the requirements for segregation of waste materials by means of clear signage and verbal instruction. Appointed employees will be made responsible for ensuring good site housekeeping.

2.6 Safety, Health and Environmental Considerations During Demolition and Construction Works

This section summarises the main environmental constraints that relate to the demolition and construction phases.

The appointed main contractor will implement a Construction, Health and Safety Plan during the lifecycle of the project, which will contain health and safety measures covering the below items at a minimum:

- Construction Health & Safety training requirements;
- Induction procedures;
- Emergency protocols; and
- Details of welfare facilities.

2.6.1 Noise

There are no statutory standards in Ireland relating to noise and vibration for construction works or for environmental noise relating to the operational phase. In the absence of specific statutory Irish guidelines, the assessment has referred to non-statutory national guidelines, where available, in addition to the most appropriate and commonly used international standards and guidelines relating to environmental noise and vibration.

Construction noise sources include construction plant and machinery that will operate over the course of the construction phase. Appropriate criteria relating to construction noise levels for the proposed development is taken from British Standard BS 5228-1 (BSI 2014) is the most widely accepted standard for this purpose in Ireland. Section 11.2 of the Limerick Development Plan (2022) requires the use of BS 5228 Parts 1 and 2 (BSI 2014) for the assessment of noise and vibration from construction and demolition activities and for the implementation of site mitigation measures where necessary.

The masterplan site is located north-west of the River-Shannon within an existing brownfield area. The north of the site is bound by residential dwellings, to south is bound by the R527 Condell Road, the east is bound by O Callaghan Strand and The River Shannon and the west by residential dwellings and the west by the Salesian Primary school.

The noise environment across the Masterplan and Applicant site is suburban in nature with road traffic and a mix of typical suburban from pedestrians, schools and residential areas. Highest noise levels are experienced along the southern portion of the Shipyard Site in immediate proximity to the R527 Condell Road. Across the masterplan and applicant site, noise levels are low to medium during both day and night-time periods due to distance from the surrounding road network and screening from existing boundary walls and site structures. The noise environment at the surrounding noise sensitive locations are typical of a suburban environment with distant road traffic and surrounding local activities contributing to the ambient and background noise environment.

he construction phase of the masterplan site extends to the full extent of the site and would include demolition of the existing buildings, excavation to proposed ground levels, basement slab construction, concrete works, steel works, construction of the superstructures, landscaping and fit out works. In addition to the construction activities on site there will be construction traffic including movement of machinery and materials within and to and from the construction site. The construction works will be undertaken over a phased basis. The applicant site will be progressed prior to the completion of Phases III and IV of the Masterplan. A variety of items of plant will be in use during the various construction phases, all of which have the potential to generate high levels of potential noise or perceptible vibration to the surrounding environment. These will include breakers, excavators, loaders, cranes and static plant such as generators, compressors and pumps.

The construction phase for the applicant site will involve the same general construction activities as the overall Masterplan site, i.e. demolition works, excavation to base ground levels, basement slab construction, concrete works, construction of the superstructures, landscaping and fit out works in addition to construction traffic. The works will be undertaken on a phased basis during the construction phase of the application site. The same potential sources of noise and vibration associated with the Masterplan Site will occur during the construction of the Application Site.

2.6.2 Air Quality

This section describes the site setting with respect to Air Quality, based on the following:

- Guidance on the Assessment of Dust from Demolition and Construction v2.2 (Institute of Air Quality Management [IAQM] (hereafter referred to as the IAQM Guidelines) (IAQM, 2024);
- A Guide To The Assessment Of Air Quality Impacts On Designated Nature Conservation Sites (Version 1.1) (IAQM, 2020); and
- PE-ENV-01106: Air Quality Assessment of Specified Infrastructure Projects (Transport Infrastructure Ireland [TII], 2022).

The receiving environment in terms of air quality is the same for the proposed development and overall masterplan development as they are located within the same general area. Air quality is unlikely to differ across the sites. The nearest representative weather station collating detailed weather records is Shannon Airport meteorological station, which is located approximately 18 km northwest of the site. Air quality monitoring programs have been undertaken in recent years by the EPA. The most recent annual report on air quality in Ireland is 'Air Quality In Ireland 2023' (EPA, 2024). The EPA website details the range and scope of monitoring undertaken throughout Ireland and provides both monitoring data and the results of previous air quality assessments. In terms of air monitoring and assessment, the proposed development site is within Zone C (EPA, 2024). The long-term monitoring data has been used to determine background concentrations for the key pollutants in the region of the proposed development. The background concentration accounts for all non-traffic derived emissions (e.g. natural sources, industry, home heating etc.). Representative EPA monitoring stations have been used to determine an estimate of the background air quality in the region of the proposed development.

Based on the above information the air quality in the Limerick area is generally good, with concentrations of the key pollutants generally well below the current limit values set out in Directive 2024/2881. The current pollutant concentrations at the majority of monitoring sites are also in compliance with the 2030 limit values set out in Directive (EU) 2024/2881 and the clean air strategy, however, concentrations are exceeding or approaching the limit values at some sites. Further measures will be needed at a national scale to reduce air pollution in future years. The EPA have indicated that road transport emissions are contributing to increased levels of NO₂ with the potential for breaches in the annual NO₂ limit value in future years at locations within urban centres and roadside locations. In addition, burning of solid fuels for home heating is contributing to increased levels of particulate matter (PM₁₀ and PM_{2.5}). The EPA predict that exceedances in the particulate matter limit values are likely in future years if burning of solid fuels for residential heating continues (EPA, 2024).

During the construction phase construction dust emissions have the potential to impact air quality. Dust emissions will primarily occur as a result of site preparation works, demolition of existing structures, earthworks and the movement of trucks on site and exiting the site. There is also the potential for engine emissions from site vehicles and machinery to impact air quality. Construction phase impacts will be short-term in duration. Engine emissions from vehicles accessing the site have the potential to impact air quality during the operational phase of the development through the release of nitrogen dioxide (NO₂) and particulate matter (as PM₁₀ and PM_{2.5}).

2.6.3 Soils and Geology

Ground works will be required to clear the site and facilitate construction of building foundations, access roads, utilities and landscaping.

The development site works, or excavation works will not have a significant impact on the underlying bedrock geology.

Surplus subsoil generated from excavations for foundations, roads and drainage will be stockpiled and reused on site where possible. However, any subsoil that requires to be removed (including contaminated soils) will be taken for offsite reuse, recovery or disposal as required, in accordance with the CDRWMP.

Excavations will be supervised by a suitably qualified person to ensure any potential additional contaminated materials encountered are identified. Any potential additional contaminated soils encountered during the construction works will be isolated from clean material and stockpiled for testing by a suitably qualified person. In the event that contaminated material is identified on site, this material will need to be segregated from clean/inert material, tested, classified and disposed /managed as either non-hazardous or hazardous in accordance with the EC Council Decision 2003/33/EC 3, which establishes the criteria for the acceptance of waste at landfills, and all relevant waste management legislation. The contractor will notify Limerick Twenty Thirty DAC, and Limerick City and County Council (LCCC) and provide a Hazardous/Contaminated Soil Management Plan, to include estimated tonnages, description of location, any relevant mitigation, destination for disposal/treatment, in addition to information on the authorised waste collector(s).

Subsoils beneath the subject site comprise several meters of made ground, underlain by clay and gravel deposits. Limestone bedrock is encountered within a depth of 4m at some locations, and deeper elsewhere across the site (GSI, 2025) (PGL, 2025). The Geological Survey of Ireland (GSI) have reported the present of calcite at the site (in the vicinity of the onsite reservoir) as follows: '5ft. wide calcite vein with nearly clear crystals found in cutting foundations (1946)...only locality in Ireland of Iceland Spar variety of calcite' (GSI, 2025). Exposed bedrock is present in the historic quarry located in the northern portion.

The site has had various stages of development; previous land uses include the quarry, a flax factory, and condensed milk production, and a sweet factory.

During the 2025 Ground investigation (PGL, 2025), C&D waste material (including red brick fragments, construction rubble, plastic, silicon, slate tile, and wiring) was identified in made ground beneath the proposed Stonetown Terrace development. In addition, physical / olfactory evidence of potential hydrocarbon contamination was identified within the exploratory hole records for the 2025 Ground investigation (PGL, 2025). 61no. representative environmental soil samples were collected during the 2025 Ground investigation (PGL, 2025).

Results are summarised as follows:

- Asbestos Containing Material (ACM) in the form of Fibre/Clumps identified. Asbestos was also identified in the form of Chrysotile.
- Arsenic levels range from 2.7mg/kg to 86mg/kg.

- Lead levels range from 9.2mg/kg to 6,400mg/kg.
- Polycyclic Aromatic Hydrocarbons (PAHs): Naphthalene (1no. exceedance), Fluoranthene (1no. exceedance), and Benzo[a]pyrene (exceedances identified in 4no. samples).
- Benzene: 1no. exceedance.
- Total Petroleum Hydrocarbons (TPH): Potential sources of TPH measured by the presence of PAHs in the soil were identified in 3no. samples.

Based on these results (as detailed further in Chapter 10 – Land Soils and Geology of the EIAR), contaminated soils have been identified beneath the proposed Stonetown Terrace Building, O'Callaghan Strand Building, Flax Mill site (PBSA / Quarry Building) and the Shipyard site.

2.6.4 Water Management Plan

In assessing potential water quality impacts, the EPA advocates a 'risk-based approach', and states that 'the principal aim in dealing with contaminated land and groundwater related issues is to secure the protection of human health, water bodies (including groundwater) and the wider environment' (EPA, 2013). In accordance with this risk- based approach a preliminary Source-Pathway-Receptor (SPR) model has been derived for the Site. Six key receptors (in terms of surface water /groundwater quality) have therefore been identified as follows;

- Bedrock aquifer beneath the Site (a locally important aquifer (Lm) Bedrock which is Generally Moderately Productive (including onsite Reservoir);
- Lower River Shannon SAC (site code 002165) located adjacent to the Site (which is also a classified Transitional Waterbody (Limerick Dock)) (via. direct connection (existing discharge outfall from onsite reservoir), and indirect groundwater pathway);
- Transitional Waterbody (Limerick Dock) (EPA Ref: IE_SH_25S012600) (via. direct connection (existing discharge outfall from onsite reservoir), and indirect groundwater pathway);
- Westfield Wetlands (which are part of the Lower River Shannon SAC (site code 002165), located 35m from site (via. potential direct connection (reported historic abstraction from spring to site) and indirect groundwater pathway).
- Fergus Estuary And Inner Shannon, North Shore pNHA (site code 002048) located adjacent to the Site, (via. direct connection (existing discharge outfall from onsite reservoir), and indirect groundwater pathway); and,
- River Shannon & River Fergus Estuaries SPA (site code 004077), located ca. 20m from Site (via. direct connection (existing discharge outfall from onsite reservoir), and indirect groundwater pathway).

The onsite reservoir is a key sensitive receptor, given that it is a open body of water (within excavated bedrock), with a proven discharge pipe which outfalls directly to the Limerick Dock waterbody, Lower River Shannon SAC, and River Shannon & River Fergus Estuaries SPA. There is also a potential direct connection from the onsite reservoir to the Westfields Wetlands (via. reported historic abstraction from Wetlands Spring). Furthermore, based on the results of the tracer testing, there is potential for a second connection pipe between the onsite reservoir and the Limerick Dock waterbody, Lower River Shannon SAC, and River Shannon & River Fergus Estuaries SPA.

In order address the potential risk of any potential water quality impacts to the onsite Reservoir, and connected surface waterbodies (Lower River Shannon SAC, the River Shannon & River Fergus Estuaries SPA, Fergus Estuary And Inner Shannon, North Shore pNHA, and Westfield Wetlands), the Contractor(s) will develop, implement and maintain a Water Management Plan.

The Water Management Plan will include but not be restricted to the specific mitigation measures as detailed in the following sections of the CEMP: 2.6.7. Flood Risk; 7.1.2 Waste management; 7.4.2. Pollution Prevention Management Plan; 7.5.2. Water Resources (and Energy Use) Management Plan; 7.11.2 Contaminated Land Control Management Plan; and 7.12.2 Soil Erosion and Sedimentation Management Plan, as well as any

relevant planning conditions, and any relevant future additional requirements via. changes in legislation or best practice guidance.

The Contractor(s) will provide a copy of the Water Management Plan to LCCC for review and comment in advance of commencement of any demolition or construction works onsite.

2.6.5 Ecology

No protected habitats were recorded within the site. The value of the existing habitats on site relies primarily within their function to support the local fauna. Six bat species, as well as Myotis sp. were recorded commuting and foraging across the proposed works site during the bat surveys carried out, including Soprano pipistrelle, Common pipistrelle, Leisler's bat, Brown long-eared bat, Nathusius' pipistrelle and Lesser horseshoe bat. Mammal surveys have been carried out and it can be concluded that the site does not provide suitable habitat to support breeding protected mammals (i.e badger, otter), however otter is known to utilise the River Shannon which flows adjacent to the site. Wintering Bird surveys have been completed and the site (including the reservoir) does not provide suitable habitat to support SCI species associated with nearby SPAs, however common garden birds species are considered likely to use the site for breeding. No protected fisheries were recorded. The site is located in close proximity to the River Shannon, which is designated as part of the Lower River Shannon SAC and the River Shannon and River Fergus Estuaries SPA. The reservoir within the site is likely hydrologically connected to the above mentioned European sites.

A derogation licence from NPWS has been obtained for the heritage works (DER-BAT-2025-169). Bat monitoring is ongoing at the site as part of Phase 1 Heritage works in line with conditions from the derogation licence.

A derogation licence from the NPWS will be in place for the project in relation to bat disturbance and loss of habitat during construction. A derogation licence application has been submitted to NPWS (Refer to Appendix 7.4 of the EIAR) from the NPWS and will need to will be in place for the project. The derogation licence is issued by NPWS on a yearly basis, and therefore it is expected that multiple licences will be necessary. Each licence will be informed by monitoring undertaken at the site and will be specific to the works to be undertaken during the calendar year. NPWS will be informed of any progress made during construction with regular updates. Construction mitigations in relation to bats include the following:

- Prior to commencement, confirmatory inspections and bat activity surveys will be carried out to ensure no bats are present within the buildings. These will be catered to each specific building. If these cannot rule out the presence of bats, precautions will be taken during the demolitions (manual removals, delayed use of machinery to allow escape) and these will be undertaken under the supervision of an ecologist.
- Demolition works will not be carried out during the bat activity season (April-September) within buildings where active day roosts are found. Where pre-commencement confirmatory surveys identify any alternative roosts, demolition works will not be carried out in respect of these alternative roosts during bat activity season.similar timing mitigations will be applied.
- A toolbox talk will be carried out prior to works commencing by the project ecologist to inform working crews of the potential effects of the works on resident bats, and known roosting locations will be clearly pointed out.
- Prior to demolitions being carried out, alternative roosting resources will be set up to retain roosting availability on site. These will be in the form of three cathedine bat houses, suitable for LHB. Whilst two of the Cathedine night roosts will be located in areas relatively buffered from continuous construction activities, in the Victorian terrace garden and along an existing terrace looking over the reservoir, the third roost will be in the north-western corner of the Quarry Site. A 5m buffer will be created around it to avoid stockpiling and machinery in its immediate vicinity. This is primarily to avoid damage to the roost.
- Other available roosting spaces will be retained along the quarry wall, under the reservoir tunnels and in buildings
 not proposed for demolition. The permanent bat houses included in the design will also be set up prior to
 demolition or as soon as possible following site clearance.

The use of the site by LHB will be monitored during construction using passive static detectors left on site and tuned to the specific frequency calls of the species, to reduce battery and storage usage. A minimum of three detectors at the proposed bat house locations, or nearby, are proposed.

In relation to disturbance, otter are predominantly crepuscular in nature, and it is anticipated that construction activity will mostly be confined to daytime hours, thus minimising potential disturbance related impacts to the species.

Best practice noise mitigations are presented in Chapter 13 Noise and Vibration, of the EIAR. The following measures will also be implemented to limit disturbance to otter:

- All plant and equipment for use will comply with S.I. No. 632/2001 European Communities (Noise Emission by Equipment For Use Outdoors) Regulations, 2001
- Operating machinery will be restricted to the proposed works site area.
- The use of artificial lighting will be avoided during construction works. Any unavoidable artificial lighting used to facilitate works will be blocked from spilling onto the River Shannon, using directional accessories or physical barriers.
- All vehicles and mechanical plant will be fitted with effective exhaust silencers and maintained in good working order for the duration of the contract.
- Compressors will be of the "sound reduced" models fitted with properly lined and sealed acoustic covers which
 will be kept closed whenever the machines are in use and all ancillary pneumatic tools shall be fitted with suitable
 silencers.
- Machines which are used intermittently will be shut down or throttled back to a minimum during those periods when they are not in use.
- Any plant such as generators or pumps which are required to work outside of normal working hours will be surrounded by an acoustic enclosure.

In addition, the applicant commits to the use of lights during construction (such that they are necessary) in line with the following guidance that is provided in the Dark Sky Ireland Lighting Recommendations:

- Every light needs to be justifiable,
- Limit the use of light to when it is needed,
- Direct the light to where it is needed,
- Reduce the light intensity to the minimum needed,
- Use light spectra adapted to the environment,
- When using white light, use sources with a "warm" colour temperature (less than 3000K, ideally 2700K).

2.6.6 Landscape and Visual Amenity

he lands occupying the site offer a mix of local scale landscape elements which represent a series of industrial uses stretching back to the mid-19th Century and which now largely supplant any former natural landscape features. The site is an amalgam of distinct zones, each of which is proposed for discrete aspects of development within this current planning application. These development zones reflect their underlying landscape qualities and differ from one another in terms of landform, elevation, exposure/enclosure, historical development, vegetation, built forms etc. The site is dissected by the North Circular Road, which separates the zones which are proposed to receive the bulk of development from the 'Shipyard' development zone, south of the road, which is earmarked for future development but with only temporary 'meanwhile' development proposed under this current planning application.

Despite diminishing dependence on the river for transportation, the river has been central in the city's development and remains a major aspect of the city's landscape character and its personality. The larger part of the Cleeves site is physically enclosed by inward-looking buildings and surrounding boundary walls around, however it too shares these very strong connections with the River Shannon – visually, culturally and historically.

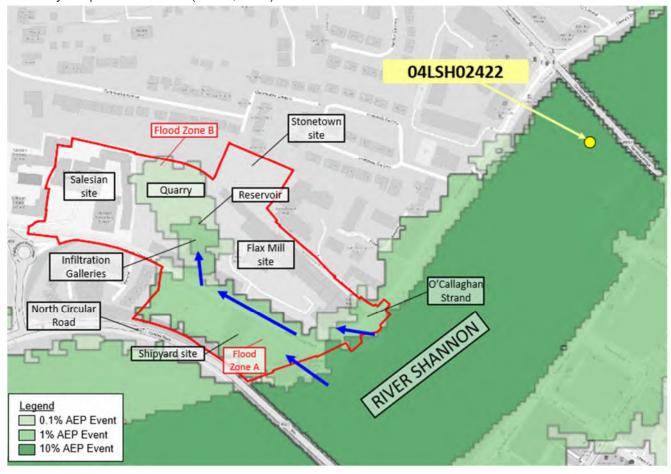
The Cleeves Masterplan site is located just north of the Condell Road, at the northern end of Shannon Bridge. It forms a part of the interface between the built city and the protected wetlands to the south and as such, it presents a marked contrast between the low-lying, soft riparian, semi-natural wetlands to the south-west and the more elevated land with its built development north of them. Visually this contrast was greatly accentuated by the insertion of Shannon Bridge between the two and is most apparent when looking northwards along the bridge or across the river from the quays along the south bank.

Potential impacts during the construction phase are related to works which are temporary or short term in nature, including site activity, and vehicular movement within and around the subject site. Vehicular movement may increase in the immediate area, and temporary vertical elements such as cranes, scaffolding, site fencing, gates, plant and machinery etc., will be required and put in place.

2.6.7 Flood Risk

The site has been assessed in accordance with the "The Planning System and Flood Risk Management" Guidelines. Refer to the Flood Risk Assessment Report (ARUP, 2025) submitted as part of this planning application. As part of the sequential test, the OPW flood hazard maps have been consulted, as have the Catchment Flood Risk Assessment Maps produced by the OPW.

The purpose of the report is to identify and assess the risk of flooding to and from the development site and to propose potential mitigation measures to manage flood risk throughout the lifetime of the development, taking the potential effects of climate change into account.


The key findings of the flood risk assessment (ARUP, 2025) are as follows:

- The main risk of flooding to the site is tidal (high tides and tidal surges) from the River Shannon. Part of the site lies in areas of high to moderate risk of flooding (Flood Zones A or B). The Shipyard site and part of the Flaxmill site (Infiltration Galleries) are at high risk of tidal flooding (0.5% Annual Exceedance Probability AEP), parts of the Quarry site are at moderate risk of flooding (0.1% AEP) and the rest (majority) of the site is at low risk (<0.1% AEP). These areas correspond to Flood Zones A, B and C respectively.
- The site is at low risk of fluvial flooding from the River Shannon in the absence of a high tidal boundary. The Stonetown Terrace, Salesian and Quarry sites could potentially be at risk of flooding from overland flows originating from the adjacent residential development to the north.
- Groundwater levels within the site generally exhibit no substantive correlation with the tidal signal and the water levels in the reservoir (which themselves are correlated to the tidal signal). The exception to this is at a well location within made ground in very close proximity to the reservoir at the Quarry site, where the testing results showed that the groundwater levels are more closely related to the water levels in the reservoir (and by default, correlated to the tidal signal, noting the reservoir levels do exhibit a tidal influence, albeit a muted correlation i.e. as these levels are still well below the corresponding tide levels). Overall the risk of groundwater flooding is deemed low, particularly once the connectivity of the reservoir to the river is established and mitigated.
- Survey investigations have confirmed that the reservoir within the Quarry site discharges to the River Shannon. Ongoing analysis will further the understanding of the subsurface pipe network and its hydraulic connectivity to the river. It is evident from initial surveys that the flow and volumes passing through the network and reservoir are low and the tidal signal is muted, indicating a lower risk from tidal flooding. Upon completion of the network assessment, measures will be implemented to prevent backflow through the system. This shall include the strategic installation of non-return valves and/or decommissioning of redundant pipework.

- Highly vulnerable uses such as residential properties shall where possible be in areas at lower risk of flooding or raised upper levels. Residential areas have been located at Salesian site (low), Stonetown Terrace (low) and Quarry site (moderate). Residential plots are also proposed at the upper levels at the O'Callaghan Strand site.
- Flood Protection Level: Development to be protected against the 1 in 200-year tidal event with allowance for climate change and a suitable freeboard.
- Climate Change Allowance: +500mm for less vulnerable uses and +1000mm for highly vulnerable.
- Freeboard Allowance: +500mm
- Minimum Recommended Finished Floor Levels:
 - Lower allowance (commercial uses): 5.7m AOD
 - Higher allowance (residential/habitable spaces): 6.2m AOD
- Flood resilient and resistant construction can be used to achieve the required protection, if raising of flood levels is not practically achievable.
- Safe access and egress to be provided from all buildings for emergency vehicles. The Master Plan proposes that North Circular Road (NCR) be raised above 5.7m AOD to provide safe access and egress.
- There is a risk of overland flows entering the Salesians, Quarry and Stonetown Terrace sites from the north during a significant rainfall event. A new perimeter drain (open or piped) can intercept any offsite overland flows from adjacent properties to the north of the site to safely divert the flow away from the properties.

The extent of predicted tidal flooding (CFRAM study) and flow paths (shown in blue) within the proposed development boundary are presented below (ARUP, 2025).

Figure 2-13 - Tidal flooding (CFRAM study) and flow paths (shown in blue). Site boundary shown in thin red line (ARUP, 2025)

Refer to the flood risk assessment report (ARUP, 2025) submitted as part of this planning application for further details.

2.6.7.1 Construction Stage Flood Risk Management Plan

From a flooding perspective, the proposed construction compound at the Shipyard site, lies within the 0.5% AEP area for tidal flooding. However because it is a temporary construction and does not require planning, it is permitted to be in this location temporarily (ARUP, 2025).

Based on the extent of predicted tidal flooding (as presented in the above figure), the other construction compound at the Flaxmill site is located outside of the predicted flood zone. All fuels, chemicals, oils, paints and any other hazardous materials will be stored within the construction compound at the Flaxmill site, which is located outside of the predicted flood zone.

To mitigate flood risk (or unacceptable residual flood risk) during the construction period, the contractor will employ the following mitigation measures as part of the site preparation for the construction phase (ARUP, 2025):

Demolition & Construction Stage Flood Protection Measures:

- Elevating the site compound / site storage areas at the Shipyard site via fill placement to an appropriate level (i.e. 5.7m AOD based on the outcome of the FRA (ARUP, 2025).
- Constructing and/or implementing temporary flood defences at the Shipyard site (i.e. civil works and/or proprietary flood defence products, or a combination of both) to an appropriate level (i.e. 5.7m AOD based on the outcome of the FRA (ARUP, 2025).
- In the event of a tidal flood warning, materials stored in the Shipyard site compound will be removed immediately to avoid the risk of flooding to neighbouring properties.
- Preparation of a Flood Emergency Response Plan for Construction Phase (FERP-CP) A FERP-CP will be developed by the Contractor(s) for the project, which will contain a detailed response plan to a tidal flood event on the Shannon occurring while construction was active on the site, which will include the following mitigation measures (noting this not necessarily to be an exhaustive list of measures) (ARUP, 2025):
 - Development of a FERP-CP in the first instance;
 - Definition of designated roles within the construction team / firm, and associated responsibilities with regard to the implementation of the FERP-CP;
 - Having an appropriate nominated person (e.g. site manager) who will be responsible for monitoring weather warnings, flood warnings, and storm-tide warnings (i.e. the 'Construction Phase Flood Manager') this will be a part-time role that will only ever come into play on a periodic basis (or maybe not at all over the course of the construction phase);
 - Communication protocols to the site team to alert them to the possibility of a flood and the need to move any machinery, plant, equipment, etc, to an appropriate location within the site/site compound if safe to do so, and to evacuate the site:
 - General protocols around where and how machinery, plant, other equipment and materials are stored / stockpiled / located within the site compound(s), noting that all fuels, chemicals, oils, paints and any other hazardous materials will be stored within the construction compound at the Flaxmill site, which is located outside of the predicted flood zone.
 - Signage and other information on site drawing awareness to FERP-CP protocols (e.g. materials / plant / equipment storage, evacuation routes, etc).
 - The level of the compound and the materials storage areas are to be determined by the contractor and to be confirmed in the Flood Emergency Response Plan for Construction Phase (FERP-CP), taking into account the above mitigation measures, as well as the findings of the FRA (ARUP, 2025).

The Contractor(s) will provide a copy of the FERP-CP (which will take into account any relevant planning conditions, and any relevant future additional requirements via. changes in legislation or best practice guidance) to LCCC for review and comment in advance of commencement of any demolition or construction works onsite.

2.6.8 Cultural Heritage

The subject site comprises brownfield portions with upstanding structures. There are no known archaeological monuments on any portion of the subject site nor its immediate vicinity. There are two protected structures on the site: a former flax mill and a brick chimney. There are other structures which are of high heritage significance and the subject site on the basis of its size and location close to the River Shannon has the potential to contain subsurface archaeology of any time period.

The Records of Monuments and Places records known archaeological in the vicinity of the site of development. It lists five sites on the northwest side of the River Shannon and within 1km of the site of development. A geophysical survey was commissioned as part of the preliminary works of the subject site (Howard, 2022). The survey detected anomalies to a depth of 2m and within open accessible grounds that comprised the site. A number of features were detected.

The National Inventory of Architectural Heritage lists two structures within the site of development (NIAH Ref: 21512053 – Factory; NIAH Ref: 21512059 – Chimney), described as follows:

- NIAH 21512053 (Factory) Cleeve's Condensed Milk Factory originally Lansdowne Spinning Mill is described as 'Detached fifteen-bay four-storey stone factory building, built in 1853, facing west with a full-height bow end to south side elevation, and prolonged to south by a ten-bay two-storey block, and to north by a twenty-three bay single- and two-storey block, to which various twentieth-century alterations and interventions have been made.
- NIAH 21512059 (Chimney) Cleeve's Condensed Milk Factory originally Lansdowne Spinning Mill is described as 'Freestanding octagonal-plan red brick chimneystack, built c. 1860, as part of the vast industrial complex. It was originally 150 feet high and was reduced by 30 feet in the 1960s. The factory is now in use as a dairy processing building.

The site assessment did not reveal any previously unrecorded archaeological heritage throughout the site. This was primarily due to almost all of the ground surface covered with hard surfaces of concrete or tarmac.

Collins and Coyne (2021) and Feilden Clegg Bradley Studios + Bucholz McEvoy (2024) have undertaken extensive built heritage assessment of the subject site.

No recorded archaeological sites have been identified within or near the development site. Previous unrelated archaeological investigations in the vicinity have yielded no archaeological discoveries. Unlike typical urban centres, the site has received limited development over time, with development having commenced from the early to mid-19th century, in which the quarry activities most likely occurred from the later part of the 18th century. Nonetheless, given the size of the site, the possibility remains of archaeology surviving at a subsurface level, either in whole or in part.

2.6.9 Traffic and Transportation

In relation to transport, the Contractor(s) will further develop the Construction Traffic Management Plan (CTMP) presented in Appendix B of this CEMP. All mitigation measures, as presented in Section 7 of this CEMP will be fully complied with by the Contractor(s) for the full duration of the proposed demolition and construction works.

3. Legislation and Guidance

All parties, contractors and consultants working on this project shall be subject to the laws of Ireland and the various international/regional protocols and agreements to which Ireland is a party. In the event that legislation is updated the latest version shall be followed. All relevant new legislation will be followed as appropriate. This document outlines most current legislation at the date of issue. It is the responsibility of the Contractor to ensure that they are up to date with the details of the latest iterations of legislation relevant to the project throughout the duration of the contract.

The Designer will be aware of all key environmental risks and associated measures set out within this CEMP, and the final detailed design will take due cognisance of these.

The Contractor will set out the detailed CEMP in a clear format and will address all key environmental risks and associated measures. The Contractor will be aware of and comply with the legislation and guidance set out in this document, any specific planning conditions which may be associated with the proposed development, and other relevant documentation as prescribed by the Employer and planning authority.

3.1 Legislation

It should be noted that the appointed Contractor will be required to be aware of their obligations under legislation. Such legislation, includes, but is not restricted, to:

- Planning and Development Act and subsequent amendments, 2000- 2025;
- Planning and Development Regulations 2001;
- The Birds Directive: Council Directive of 2 April 1979 on the conservation of wild birds (79/409/EEC);
- The Birds Directive: Council Directive 2009/147/EC on the conservation of wild birds;
- The Habitats Directive: Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora:
- The European Communities (Birds and Natural Habitats) Regulations, 2011 (S.I. 477 of 2011), as amended, 2015 (S.I. No. 355 of 2015);
- Water Framework Directive (WFD): Directive 2000/60/EC of the European Parliament and Council establishing a framework for Community Action in the field of water policy, as amended;
- European Communities Environmental Objectives (Surface Waters) Regulations, 2009, S.I. No. 272 of 2009, as amended, 2012 (S.I. No. 327 of 2012), 2015 (S.I. No. 386 of 2015), 2019 (S.I. No. 77 of 2019), 2021 (S.I. No. 659 of 2021), 2022 (S.I. No. 288 of 2022), 2023 (S.I. No. 410 of 2023), 2025 (S.I. No. 50 of 2025);
- European Communities Environmental Objectives (Groundwater) Regulations 2010, S.I. No. 9 of 2010, as amended, 2016 (S.I. No. 366 of 2016), 2022 (S.I. No. 287 of 2022);
- European Communities (Environmental Liability) Regulations, 2008, S.I. No. 547 of 2008, as amended, 2011 (S.I. No. 307 of 2011), 2015 (S.I. No. 293 of 2015);
- European Communities (Shipments of Hazardous Waste Exclusively within Ireland) Regulations 2011, S.I. No 324 of 2011;
- European Communities (Transfrontier Shipment of Waste) Regulations 1994 (S.I. No. 121 of 1994);
- European Union (Waste Electrical and Electronic Equipment) Regulations 2014 (S.I. No. 149 of 2014), as amended 2019 (S.I. No. 233 of 2019);
- European Union (Drinking Water) Regulations, 2014, S.I. No. 122 of 2014, as amended 2017 (S.I. No. 464 of 2017), as amended (S.I. No. 286 of 2022), 2023 (S.I. No. 99 of 2023);
- Waste Framework Directive 2008/98/EC of the European Parliament and Council on waste, as amended 2018 (S.I. No. 851 of 2018);
- Waste Management Acts of 1996 to 2021;

- The Water Pollution Acts of 1977 & 1998;
- Water Framework Directive (WFD): Directive 2000/60/EC of the European Parliament and Council establishing a framework for Community Action in the field of water policy, as amended;
- The Wildlife Acts 1976 to 2023;
- Water Policy Regulations 2003, S.I. No. 722 of 2003, as amended, 2005 (S.I No. 413 of 2005), 2008 (S.I No. 219 of 2008), 2010 (S.I. No. 93 of 2010) and Amendment (No. 2) Regulations, (S.I. 326 of 2010) & EU Water Policy Regulations 2014 (S.I 350 of 2014), 2018 (S.I. No. 261 of 2018), 2022 (S.I. No. 166 of 2022), 2025 (S.I. No. 52 of 2025);
- Water Conservation Regulations 2008, S.I. No. 527 of 2008;
- Guidelines on protection of fisheries during construction works in and adjacent to waters (IFI, 2016);
- Litter Pollution Act of 1997, as amended, 2017 (Bill 58 of 2017);
- Litter Pollution Regulations 1999, S.I. No. 359 of 1999);
- Waste Management (Facility Permit and Registration) Regulations 2007, S.I. No. 821 of 2007, as amended, 2008 (S.I. No. 86 of 2008), 2015 (S.I. No. 198 of 2015), 2019 (S.I. No. 250 of 2019), 2023 (S.I. No. 471 of 2023);
- Waste Management (Collection Permit) Regulations 2007, S.I. No. 820 of 2007), as amended, 2015 (S.I. No. 197 of 2015), 2016 (S.I. No. 24 of 2016), 2023 (S.I. No. 63 of 2023 & S.I. No. 104 of 2023);
- Waste Management (Licensing) Regulations 2004 (S.I. No. 395 of 2004) as amended 2010 (S.I. No. 350 of 2010);
- Environment (Miscellaneous Provisions) Act 2011, as amended 2015;
- Waste Management (Landfill Levy) Regulations 2008, S.I. No. 199 of 2008, as amended 2009, (S.I. No. 550 of 2009), 2010 (S.I. No. 31 of 2010), 2012 (S.I. No. 221 of 2012), 2013 (S.I. No. 194 of 2013), 2015 (S.I. No. 189 of 2015), 2019 (S.I. No.182 of 2019), 2023 (S.I. No. 398 of 2023), 2024 (S.I. No. 442 of 2024);
- Waste Management (Hazardous Waste) Regulations, 1998, as amended, 2000 (S.I. No. 73 of 2000);
- Waste Management (Shipment of Waste) Regulations 2007, S.I. No. 419 of 2007;
- Waste Management (Movement of Hazardous Waste) Regulations, 1998 (S.I. No. 147 of 1998);
- Waste Management (Transfrontier Shipment of Waste) Regulations 1998, as amended, 2014 (S.I. No. 861 of 2014);
- Waste Management (Tyres and Waste Tyres) Regulations 2007 (S.I. No. 664 of 2007), 2017, as amended (S.I. No. 400 of 2017) and 2018 (S.I. No. 96/2018);
- European Union Batteries and Accumulators Regulations 2014, S.I. No. 283 of 2014, as amended, 2014 (S.I. No. 349 of 2014), 2015 (S.I. No. 347 of 2015);
- Waste Management (Registration of Brokers and Dealers) Regulations 2008, SI No. 113 of 2008;
- Waste Management (Prohibition of Material Disposal by burning) Regulations 2009, S.I No. 286 of 2009, as amended 2013 (S.I. No. 504 of 2013), 2017 (S.I. No. 599 of 2017), 2019 (S.I. No. 684 of 2019), 2022 (S.I. No. 51 of 2022), and 2023 (S.I. No. 16 of 2023);
- European Communities (Waste Directive) Regulations 2011, S.I. No. 126 of 2011, as amended 2016 (S.I. No. 315 of 2016) and (S.I. No. 323 of 2020);
- European Waste Catalogue (EWC) and Hazardous Waste List 2002, 2015 and 2018;
- Waste Management (Food Waste) Regulations 2009, S.I. No 508 of 2009, as amended, 2015 (S.I. No. 430 of 2015), 2024 (S.I. No. 294 of 2024);
- Protection of the Environment Act 2003;
- European Union (Properties of Waste Which Render It Hazardous) Regulations 2015, S.I. No. 233 of 2015, as amended, 2018 (S.I. No. 383 of 2018);
- Air Pollution Act, 1987 (Air Quality Standards) Regulations, 1987, as amended, 2002 (S.I. No. 271 of 2002), 2011 (S.I. No. 180 of 2011), 2016 (S.I. No. 659 of 2016), 2022 (S.I. No. 739 0of 2022);
- Air Pollution Act, 1987 (Emission Limit Values for use of Asbestos) Regulations, 1990 (S.I. No. 28 of 1990);

- European Communities (Control of Emissions of Gaseous & Particulate Pollutants from Non-Road Mobile Machinery) Regulations 2007, S.I. No.147 of 2007, as amended, 2011 (S.I. No. 263 of 2011), 2012 (S.I. No. 407 of 2012), 2013 (S.I No. 417 of 2013), 2016 (S.I. No. 2016/1628);
- The EU Regulation 2037/2000 (CFC's, HCFC's, Halons) Ozone Depleting Substances. Control of Substances that Deplete the Ozone Layer Regulations 2006, S.I. No 281 of 2006, as amended, 2011 (S.I. No. 465 of 2011);
- European Communities 2008/50/EC -Ambient Air Quality and Cleaner Air for Europe (CAFE) Directive, 2008;
- Air Quality Standards Regulations 2011, S.I. No. 180 of 2011.
- EU Directive 2008/50/EC Ambient air quality Directive European Communities (Ambient Air Quality Standards Regulations), 2022 (S.I. No. 739 of 2022);
- EU F Gas Regulations 2006, as amended, 2014, S.I. No. 517 of 2014, 2019 (S.I. No. 367 or 2019);
- Environmental Protection Agency Act 1992 (Noise) Regulations, 1994 S.I. 174 of 1994;
- Environmental Noise Regulations 2006, S.I. No. 140 of 2006, as amended 2018 (S.I. No. 549 of 2028), 2021 (S.I. No. 663 of 2021);
- European Communities (Noise Emission by Equipment for use Outdoors) Regulations, 2001, S.I No. 632 of 2001, as amended, 2006 (S.I No. 241 of 2006);
- European Communities (Construction Plant and Equipment) (Permissible Noise Levels) Amendment Regulations 1996, S.I No. 359 of 1996 and 2001, S.I No. 632 of 2001);
- Local Government (Planning and Development) Act 1963 (S.I. No. 28 of 1963), as amended 1993 (S.I. No. 12 of 1993);
- European Communities Conservation of Wild Bird Regulations 1985, S.I. No. 291 of 1985, as amended, 1986 (S.I. No. 48 of 1986), 1995 (S.I. No. 31 of 1995), 1997, (S.I. No. 210 of 1997), 1998 (S.I. No. 154 of 1998), (S.I. No. 131 of 1999), 2005 (S.I. No. 716 of 2005), 2010 (S.I. No. 65 of 2010), 2011 (S.I. No. 626 of 2011), 2012 (S.I. No. 84 of 2012), 2013 (S.I. No. 281 of 2013), 2019 (S.I. No. 178 of 2019);
- Noxious Weed Act, 1936, S.I. No. 38 of 1936;
- Noxious Weed Order, 1937, S.I. No. 103 of 1937;
- Flora (Protection) Order, 2015 (S.I. No 356 of 2015), 2022 (S.I. No. 235 of 2022);
- The Forestry Act, 1946, S.I. No. 13 of 1946, as amended, 2009 (S.I. No. 40 of 2009) & Forestry Act, 2014 (S.I. No. 31 of 2014);
- Forestry Regulations, S.I. No. 191 of 2017, as amended 2020 (S.I. No. 31 of 2020, S.I. No. 39 of 2020 & S.I. No. 416 of 2020), 2023 (S.I. No. 445 of 2023);
- The National Monuments Act 1930, S.I. No. 2 of 1930, as amended, 2004 (S.I. No. 22 of 2004);
- European Union (Environmental Impact Assessment and Habitats) (Section 181 of the Planning and Development Act 2000) Regulations, 2013 (S.I. No. 403 of 2013), 2015 (S.I. No. 301 of 2015), 2019 (S.I. No. 418 of 2019);
- European Union (Environmental Impact Assessment and Habitats) (Environmental Impact Assessment)
 Regulations, 2018, S.I. No. 296 of 2018; and,
- Safety, Health and Welfare at Work (Exposure to Asbestos)(Amendment) Regulations 2006 (S.I. No. 386 of 2006), 2010 (S.I. No. 589 of 2010).

3.2 Industry Guidance

The Contractor will take due consideration of, and incorporate best practice guidance, including but not limited to the following:

- BS 5837/2012. Trees in relation to design, demolition and construction;
- BS 3998; 2010. Tree Work. Recommendations;
- CIRIA (2001). C532. Control of water pollution from construction sites. Guidance for consultants and contractors;

- CIRIA (2006). C648. Control of water pollution from linear construction projects. Technical Guidance;
- CIRIA (2008). C679. Invasive species management for infrastructure managers and the construction industry.;
- CIRIA (2015). C741. Environmental Good Practice on Site;
- CIRIA (2015). C753. The SuDS Manual;
- Environmental Protection Agency (2021). 'Best Practice Guidelines for the preparation of resources & waste management plans for construction & demolition projects'
- Invasive Species Ireland (2016). Best Practice Management Guidelines. Japanese knotweed;
- National Roads Authority (NRA) (2008). Guidelines for the Crossing of Watercourses during the Construction of National Road Schemes;
- NRA (2005). Guidelines for the Treatment of Badger Prior to the Construction of National Road Schemes;
- NRA (2008). Guidelines for the Treatment of Otters prior to the Construction of National Road Schemes;
- NRA (2006). Guidelines for the Protection and Preservation of Trees, Hedgerows and Scrub Prior to, During and Post Construction of National Road Schemes;
- NRA (2010). Guidelines on the Management of Noxious Weeds and Non-Native Invasive Plant Species on National Roads (Revision 1); and,
- Sustainability & Environmental Appraisal (March 2020) LA 120 Environmental management

Project Roles and Responsibilities

For the purposes of clarity, the roles and responsibilities of the project team for the proposed development will be determined at the very outset of the Construction Stages of this project. Key roles are listed below. These are typically performed by the Client, Engineer, and Contractor(s) as presented below. Specific details will be determined upon the Detailed Design and Contract Stage.

Table 4-1 - Roles and Responsibilities

anner: HRA Planning
TBC
t: TBC
tructural and Environmental Team
tant: TBC
TBC
t: TBC
ctor(s)
ontractor(s): TBC
TBC
t: TBC

The Client/Employer

Limerick Twenty Thirty DAC will be responsible for ensuring that competent parties are appointed to undertake the construction and that sufficient resources are made available to facilitate the appropriate management of risks to the environment.

In addition to the above, the employer (Limerick Twenty Thirty), will also provide an employer's environmental representative. This officer will be a suitably qualified ecologist or environmental scientist and will work closely with the contractor's representative to ensure that all environmental/ecological requirements are adhered to and fully monitored. The employer's representative will visit the site on a weekly basis (at a minimum) during the construction phase. An audit of the works will be undertaken during these weekly visits, and it will be ensured that the prescribed methods are employed. Any potential impacts additional to those predicted will be highlighted and if necessary, additional measures put in place to prevent them. Any deviance from the agreed methodology will be highlighted and if necessary rectified.

4.2 Environmental Manager

An Environmental Manager will be appointed by the Contractor to ensure that the CEMP is effectively implemented. The Environmental Manager will be a suitably qualified, competent and experienced professional that will perform the necessary tasks, review environmental procedures and consult with the members of the construction team and stakeholders as required. The Environmental Manager will be responsible for:

- Ensuring that the CEMP and all relevant documents such as environmental control plans are developed, implemented and maintained on site;
- Updated the CEMP to address any subsequent planning conditions relevant to the proposed development.
- Ensuring compliance with the Conditions of the Planning Permission and any other relevant permits/ consents required;
- Ensuring that construction occurs in accordance with the relevant environmental requirements and that such compliance is adequately recorded and documented;
- Conducting regular environmental inspections and compiling an environmental compliance report on a monthly basis;
- Attending site and stakeholder meetings as required;
- Keeping up-to-date with relevant environmental best practice and legislative changes;
- Ensuring all staff have undertaken adequate environmental inductions, awareness briefings and training;
- Dealing with environmental complaints; and
- Managing and responding to environmental incidents and ensuring that all incidents are recorded and reported in an appropriate manner.

4.3 Construction Director

The Construction Director will be responsible for the overall execution and organisation of all environmental related activities, as appropriate. Some responsibilities of the Construction Director will comprise the following:

- Overall responsibility for the implementation of the CEMP;
- Allocating the correct resources in order to ensure the successful implementation of the CEMP; and,
- Assisting in the management review of the CEMP for suitability and effectiveness.

4.4 Construction Manager

The Construction Manager is directly responsible to the Construction Director in assisting with the successful execution of the Proposed Development. The responsibilities of the construction manager in respect of the CEMP comprise the following:

- To report to the Construction Director on the on-going performance and development of the CEMP;
- To discharge his/her responsibilities as per the CEMP; and,
- To support and augment the Construction Management Team through the provision of adequate resources and facilities for the duration of the implementation of the CEMP.

4.5 **Ecological Clerk of Works**

An Ecological Clerk of Works (ECoW) will be appointed by the Contractor to ensure that the ecological plan is effectively implemented. The representative will be a suitably qualified ecologist or environmental scientist. All operatives working on the site will be made fully aware of the environmental responsibilities, conditions and requirements along with a full description of the methods to be employed. This information will be imparted at a dedicated site induction prior to commencing work on the site. The induction of any new staff will include an environmental induction. A checklist will be filled in on a weekly basis to show how the measures above have been complied with. Any environmental incidents or non-compliance issues will immediately be reported to the project team and that the project team will take corrective action if necessary. The construction management team will be regularly monitoring the works and will be fully briefed and aware of the environmental constraints and protection measures to be employed. The contractor's environmental representative will work closely with the Employers Environmental Representative as described below.

The ECoW will be responsible for:

- Monitoring the construction works and identifying any additional or refined mitigation measures (i.e. 'adaptive management measures required), in relation to any ecology;
- Reporting the findings of monitoring, including any adaptive management measures recommended and the effectiveness of same;
- Delivering site induction and training on ecological aspects to all construction personnel prior to commencement of construction activities;
- The implementation of ecological mitigation measures;
- Updating, renewing and returning the derogation licence in place throughout construction.

4.6 **Resource Manager**

Prior to the commencement of site works, the contractor will nominate a suitably qualified Resource Manager with expertise in waste and resource management to implement the CDRWMP (ARUP, 2025). The nominated Resource Manager will be responsible for implementation of the CDRWMP. In the event of the Resource Manager leaving the project team, the contractor will nominate a suitable replacement. Further details of the role and responsibilities of the Resource Manager are set out in the planning stage CDRWMP, submitted under separate cover as part of the application

Environmental Management Procedures 5.

5.1 General

The Contractor will be required to have a recognised environmental management system such as ISO 14001:2015 or be able to demonstrate that they are actively working towards implementing such a system.

The works Contractor will undertake the works in accordance with the provisions of the CEMP. The CEMP will be updated by the Contractor to address any subsequent planning conditions relevant to the Proposed Development and will be reviewed by the Employer and/or the Employer's Representative. The Contractor will review and update the CEMP as appropriate and shall issue an updated CEMP. A record of the review and any recommendations will also provide (for review and approval by the Employer and/or the Employer's Representative) Environmental Control Plans (ECPs), which will be maintained and updated in accordance with the CEMP. ECPs will include (if applicable), but will not be restricted to:

- Air Quality Control Plan;
- Construction Noise and Vibration Control Plan;
- Pollution Prevention Control Plan;
- Water Resources and Energy Use Control Plan;
- Ecological Control Plan;
- Light Pollution Control Plan;
- Archaeological and Cultural Control Plan;
- Traffic Management Control Plan;
- Contamination Land Control Plan; and,
- Soil Erosion and Sedimentation Control Plan.

Guidance on the development of the Control Plans is located in Section 7 of this document.

Environmental Policy

Contractors shall have an environmental policy dated and signed by the most senior person in the company. The policy shall:

- Be appropriate to the nature, scale and environmental impacts of the organisations activities, products and
- Include a commitment to continual improvement in environmental performance;
- Include a commitment to comply with all applicable legislation and with other requirements to which the organisation subscribes which relate to its environmental aspects;
- Provide a framework for setting and reviewing objectives and targets;
- Be documented, implemented and maintained;
- Be communicated to all persons working for or on behalf of the organisation; and
- Be available to the public.

5.3 Environmental Aspects

Contractors are expected to use a qualitative approach to identify and evaluate potential environmental aspects along with any controls to prevent or mitigate environmental damage. A simple risk matrix (as follows) facilitates quick reference and assignment of risk levels for each environmental aspect:

- Extreme/serious risk;
- High risk;
- Moderate risk; and,
- Low risk.

All environmental aspects rated as High or Extreme/Serious will be classified as significant and will require control or mitigation measures to manage the risk. All environmental aspects covered by a legal requirement, for example an Environmental Permit condition will also be classified as significant even if the risk is low or moderate.

Table 5-1 - Example of Qualitative Risk Matrix

					Probability				
Severity	People	Assets	Environment	Reputation	Impossible / Rare	Improbable / Possible	Probable / Likely	Very Likely / Often	Certainty/ Frequent
Catastrophic	Multiple fatalities or permanent total disabilities	Extensive damage	Massive effects	International impact				Extreme / Serious Risk	
Severe / Major	Single fatality or permanent total disability	Major damage	Major effect	National impact		High Risk			
Critical / Moderate	Major injury or health effects	Local damage	Localized effect	Considerable impact					
Marginal / Minor	Minor injury or health effects	Minor damage	Minor effect	Minor impact		Moderate Risk			
Negligible / Insignificant	Slight injury or health effects	Slight damage	Slight effect	Slight impact	Low Risk				

Table 5-2 - Example of Aspects and Impacts Register

Environmental Aspect	Environmental Impact	Risk Rating	Control / Mitigation Measures	Risk Rating After Control
Use of fuel storage tanks on site	Potential contamination of water and land	High Risk	Double skinned tank, bunding, location on hard standing, emergency spill procedure and equipment and training	Moderate Risk

5.4 Training, Awareness and Competence

The Contractor (and their sub-contractors) will be selected with due consideration of relevant qualifications and experience. The Contractor will be required to employ construction staff with appropriate skills, qualifications and experience appropriate to the needs of the works to be carried out during construction.

A site induction will be provided to all construction staff before they commence work on site. Where appropriate, the Contractor will identify specific training needs for the construction workforce and will ensure that appropriate training requirements are fulfilled. A baseline level of environmental awareness will be established though the site induction programme. Site inductions will cover the following as a minimum:

- Introduction to the Environmental Manager;
- The requirements of the CEMP and consequences of non-compliance;
- The requirements of due diligence and duty of care;
- Identification of environmental constraints and potential impacts of the work;
- Procedures associated with incident notification and reporting including procedures for dealing with damage to the environment; and,
- The benefits of improved environmental and sustainability performance; and the potential consequences of departure from specified procedures, work instructions and method statements.

5.5 Meetings

The Environmental Manager will be responsible for arranging and holding monthly meetings with the Employer and/or the Employer's Representative. The Environmental Manager will develop and distribute minutes on monthly meetings accordingly.

5.6 Monitoring and Inspections

For the duration of the contract, the environmental performance of the Contractor will be monitored through site inspections and audits. The programme for monitoring, inspections and audits shall be specified in the contract. The Contractor shall develop, implement and maintain an Environmental Inspections and Monitoring Plan.

Records of all inspections carried out will be recorded and all actions will be closed out in a reasonable time. If additional monitoring and inspections are required due to any subsequent planning conditions, these will be added to the CEMP.

Monitoring 5.6.1

Mitigation and monitoring will be carried out so that construction activities are undertaken in a manner that does not give rise to significant negative effects.

The results of all environmental monitoring activities will be reviewed by the Environmental Manager on an ongoing basis to enable trends or exceedance of criteria to be identified and corrective actions to be implemented as necessary.

5.6.2 **Inspections**

Inspections of construction activities will be carried out by the Environmental Manager on a daily basis to ensure all necessary environmental measures relevant to the construction activities are being effectively implemented by construction staff, ensuring legal and contractual conformity.

5.6.2.1 **Daily Inspections:**

The daily inspections will include, but not be limited to, checking that:

- The site boundary is marked out and respected;
- All waste is appropriately stored and segregated;
- Waste skips are covered to prevent wind-blown litter;
- Drip trays are in place for all stored equipment and plant;
- All chemicals/fuels are stored with appropriate containment/bunds/cover;
- Construction noise is within permitted limits and does not create a nuisance;
- Dust does not create a nuisance: and.
- Fencing/hoarding is secure.

5.6.2.2 **Weekly Inspections**

The inspections will include, but not be limited to confirming that:

- Daily checklists have been completed;
- Waste storage areas have been checked and there is no build-up of waste materials;
- Spill kits have been checked and contain all relevant materials;
- The performance of all pollution control equipment has been checked and the equipment is working effectively;
- Noise reduction/monitoring equipment has been checked and is operating effectively;
- Septic tanks are not overfull/discharging; and,
- Special control measures identified in Permit/Planning Conditions and CEMP are adhered to.

Nonconformity and Corrective and Preventative 5.7 **Action**

The Contractor shall establish, implement and maintain procedures to deal with actual and potential non-conformities and for taking corrective and preventative action.

Non-conformities will be identified through:

- Internal contractor audits:
- Audits by the Employer and/or the Employer's Representative;
- Audits undertaken by external certification bodies;
- Audits undertaken by regulatory authorities; and,
- General observations.

The Contractor procedures shall define the requirements for:

- Identifying and correcting non-conformities;
- Mitigating the environmental impacts of non-conformities;
- Investigating non-conformities including identify root causes and implementing appropriate actions to avoid their
- Evaluating the need for actions to prevent non-conformities and implementing appropriate actions designed to avoid their reoccurrence;
- Setting realistic timeframes for undertaking effective corrective and preventative actions;
- Recording the results of corrective and preventative actions taken; and,
- Reviewing the effectiveness of corrective and preventative actions.

All actions identified will be appropriate to the nature and magnitude of the issue and the environmental impacts encountered.

5.8 Reporting

The Contractor will be required to submit a report, the frequency to be agreed with the Contractor and Employer and/or the Employer's Representative to the Employer and/or the Employer's Representative for review and approval. The report shall address the following as minimum:

- Summary of compliance with the CEMP including identification of any non-conformances;
- Interpretation of the result of ongoing monitoring;
- Detailed description of any issues and/or non-conformances identified during inspections and/or audits;
- Record of incidents and corrective actions (including Corrective Actions Reports as appropriate);
- Synopsis of environmental complaints received/queries raised by stakeholders; and,
- Records of environmental training undertaken (as appropriate).

Environmental Records 5.9

The Contractor shall maintain records of all environmental documentation including monitoring, test results, method statements and plans. All records will be kept up-to-date and be made available for audits, inspections and periodical reporting. The Contractor will maintain the following environmental records (as a minimum) that will be made available for inspection to the Employer and/or the Employer's Representative and the relevant authorities if required:

- Management plans;
- Records of environmental incidents;
- Environmental reports;
- Records of environmental training;
- Register of environmental complaints;
- Corrective Action Reports;
- Environmental inspection and audit reports;

- All monitoring data;
- Waste and chemical inventories; and,
- Health and Safety records.

General Requirements 6.

The Contractor will be legally required to ensure compliance and to avoid and/or reduce significant adverse effects that have been identified where practicable.

Site Safety Compliance

The Contractor shall be responsible for overall management of the site for the duration of the proposed works and will progress their works with reasonable skill, care, diligence and to proactively manage the works in a manner most likely to ensure the safety and welfare of those carrying out construction works.

The Contractor shall comply with all relevant Statutory requirements such as the 2005 Safety Health and Welfare at Work Act, The Construction Regulations (SI 291 of 2013), the General Application Regulations (SI 299 of 2007), etc. (and any amendments thereof).

In addition, the Contractor shall comply with all the reasonable safety requirements of the Client, the Project Supervisor for the Design Process and the Project Supervisor for the Construction Stage.

Good Housekeeping 6.2

The Contractor will employ a 'good housekeeping' policy at all times. This will include, but not be restricted, to the following:

- General maintenance of working areas and cleanliness of welfare facilities and storage areas;
- Provision of site layout map showing key areas such as first aid posts, material storage, spill kits, material and waste storage, welfare facilities etc;
- Maintain all plant, material and equipment required to complete the construction work in good order, clean and
- Keep construction compounds, access routes and designated parking areas free and clear of excess dirt, rubbish piles, scrap wood, etc. at all times;
- Details of site managers, contact numbers (including out of hours) and public information signs (including warning signs) will be provided at the boundaries of the working areas;
- Provision of adequate welfare facilities for site personnel;
- Installation of appropriate security, lighting, fencing and hoarding;
- Effective prevention of oil, grease or other objectionable matter being discharged from the working area;
- Provision of appropriate waste management at each working area and regular collections to be arranged;
- Excavated material generated during construction will be reused on site as far as practicable and surplus materials/soils shall be recovered or disposed of to a suitably authorised waste facility site;
- Effective prevention of infestation from pests or vermin;
- No discharge of site run-off or water discharge without agreement of the relevant authorities; and,
- Maintenance of public rights of way, diversions and entry/exit areas around working areas for pedestrians and cyclists where practicable and to achieve inclusive access.

Consents and Licenses

All statutory consents and licences required to commence on-site construction activities will be obtained ahead of works commencing, allowing for the appropriate notice period. These will include, but are not limited to:

- Site notices;
- Derogation Licences;
- Waste Permits / Licences including for onsite crushing activities;
- Construction commencement notices; and
- Licence to connect to existing utilities and mains sewers, where required.

6.4 Site Compound

It is anticipated that the site office and welfare facilities (site compound) will likely be located on the Shipyard site for most phases, with development in the O'Callaghan Strand Zone and in the Quarry Zone accommodating independent site compounds as required. Refer to Figure 2-1 and 2-2.

Refer to logistical and construction considerations which illustrate indicative locations for access, egress, site compounds, hoarding etc. for each stage (Stage 1-9) in Figures 2-3 to 2-11 in Section 2 of this document.

Site access for all personnel and visitors will be strictly controlled and all visitors will report to the site compound prior to entering the construction area. The site compound will be fenced to keep public out of working area and will be secured. Regular inspections of the hoarding will be undertaken to ensure that the safety of any vehicles or personal are not compromised.

6.5 Hours of Working

6.5.1 Core Working Hours

The timing of construction activities, core working hours and the rate of progress of construction works are a balance between efficiency of construction and minimising nuisance and significant defects. The core construction working hours for the Proposed Development will be:

- Monday to Friday: 07:00 to 18:00;
- Saturdays: 08:00 to 14:00;
- Sundays & Bank Holidays: No works activities shall take place on site.

6.5.2 Start-up and shutdown

The Contractor may require a period of up to one hour before and one hour after core working hours for start-up and shutdown activities in working areas. Activities permitted may include deliveries and unloading of materials, movement of staff to their place of work, maintenance and general preparation works. The use of plant machinery likely to cause disturbance, will not be permitted outside of the core working hours.

6.5.3 Additional working hours

It may be necessary in exceptional circumstances to undertake certain activities outside of the construction core working hours. Any construction outside of the construction core working hours will be agreed by the Contractor in advance with Limerick Twenty Thirty DAC, and Limerick City and County Council and scheduling of such works shall have regard to nearby sensitive receptors.

In the case of work required in an emergency or which if not completed would be unsafe or harmful to workers, the public or local environment, Limerick Twenty Thirty DAC and Limerick City and County Council will be informed as soon as reasonably practicable of the reasons and likely duration and timing (outside of the core working hours).

6.6 Security

Security will be the responsibility of the Contractor who will provide adequate security to prevent unauthorised entry to or from the site. Given the scale of demolition works onsite, it is noted that some materials generated during the works will be valuable (e.g. scrap metal). The Contractor will utilise the existing buildings for the storage of such materials (where suitable), subject to health, safety and risk assessments in order to prevent visibility of valuable materials and risk of potential trespass and theft.

The following measures will be used to prevent unauthorised access:

- Install CCTV and security systems where required;
- Consult with neighbouring properties and local crime prevention officers including Limerick City and County Council and An Garda Siochana on site security matters where required;
- Prevent access to restricted areas and neighbouring properties by securing equipment on site such as ladders and scaffolding; and,
- When there is no site activity, close and lock site gates and set appropriate site security provisions as required.

Refer to logistical and construction considerations which illustrate indicative locations for access, egress, site compounds, hoarding etc. for each stage (Stage 1-9) in Figures 2-3 to 2-11 in Section 2 of this document.

6.7 Hoarding and Fencing

A site boundary in the form of hoarding or fencing will be established around each of the working areas before any significant construction activities commences in that working area. The hoarding/fencing shall provide a secure boundary to what can be a dangerous environment for those that have not received the proper training and are unfamiliar with construction operations.

Site hoarding also performs am important function in relation to minimising nuisance and effects including:

- Noise emissions (by providing a buffer);
- Visual impact (by screening the working areas, plant and equipment); and,
- Dust minimisation (by providing a buffer).

Refer to logistical and construction considerations which illustrate indicative locations for access, egress, site compounds, hoarding etc. for each stage (Stage 1-9) in Figures 2-3 to 2-11 in Section 2 of this document.

6.8 Services and Utility

Welfare facilities (canteens, toilets etc.) will be available within the construction compound and this will remain in place for the construction of the proposed development. The offices and site amenities will initially need to have their own power supply (generator), water deliveries and foul water collection until connections are made to the mains networks.

Electrical connections will be made by suitably qualified personnel following consultation with the relevant authorities and will be cognisant of subsequent construction works. High voltage connections will be established for heavy duty equipment and site facilities, as required.

Site services shall be installed as part of the works. Working areas will be powered by mains supplies or diesel generators where an electrical supply is not available.

Site welfare facilities will be established to provide sanitary facilities for construction workers on site. The main contractor will ensure that sufficient facilities are available at all times to accommodate the number of employees on site. Foul water from the offices and welfare facilities on the site will have the foul water collected by a licensed waste sewerage contractor before connection to the sewer line can be made.

The Contractor will be responsible for undertaking their own surveys to establish full extent of underground services prior to the commencement of construction to support any surveys already undertaken as part of early design work and statutory consent applications.

6.9 **Material Handling and Storage**

Key materials will be ordered by specific order for the project, a 'Just in Time' delivery system will operate to minimise storage of materials, the quantities of which are unknown at this stage.

Aggregate materials such as sands and gravels will be stored in clearly marked receptacles in the compound area within the site. Liquid materials will be stored within temporary bunded areas, doubled skinned tanks or bunded containers (all bunds will conform to standard bunding specifications – BS EN 1992-3:2006) to prevent spillage.

Construction materials will be brought to site by road. Construction materials will be transported in clean vehicles. Lorries/trucks will be properly enclosed or covered during transportation of friable construction materials and spoil to prevent the escape of material along the public roadway.

The majority of construction waste materials generated will be soil from excavation works. Material will be removed from site regularly to ensure there is minimal need for stockpiling.

Refer to logistical and construction considerations which illustrate indicative locations for access, egress, site compounds, hoarding etc. for each stage (Stage 1-9) in Figures 2-3 to 2-11 in Section 2 of this document.

6.10 Lighting

Construction work will generally be confined to the Core Working Hours, which for most of the year occurs during daylight hours and therefore lighting will not be required for the majority of construction work. There will however be occasions where the provision of portable lighting will be required.

Following studies carried out regarding the potential ecological impact during the demolition and construction works, and the identification of foraging bats in the area, the following measures will apply in relation to site lighting during demolition and construction:

- Light fitting temperature used will be set to a maximum of 2700K to accommodate the local wildlife requirements. This colour temperature allows for better visual comfort for the wildlife.
- As per the permanent strategy, lighting columns have be kept at or below 4m and have a specified directional beam to reduce back spill to reduce unnecessary illumination on bat foraging areas. 3.5m columns will be used along the quarry wall as this is the main bat foraging area within the site.
- Low-level bollard light fittings will be preferred to temporary lighting columns, especially in the Quarry and along the northern boundary, to reduce high-level light within bat foraging areas.
- The column lighting will be cowled and angled downwards to minimise spillage to surrounding properties and other sensitive receptors.
- Lighting will be provided with a minimum luminosity sufficient for safety and security purposes. Where practicable, precautions will be taken to avoid shadows cast by the site hoarding on surrounding roads, footpaths and amenity areas.

- Motion sensor lighting and low energy consumption fittings will be installed to reduce usage and energy consumption.
- Lighting will be positioned to not cause destruction or confusion to pass motorists, river users or navigation lights for air or water traffic.
- The Contractor will need to maintain control and ensure all lights are turned off when not required.
- The security strategy will be developed to reduce potential requirement for evening lighting.

Reinstatement of Working Areas on Completion

The Contractor will reinstate all working areas as work proceeds during construction. All plant, equipment, materials, temporary infrastructure and vehicles will be removed at the earliest opportunity and the surface of the ground restored as near as practicable to its original condition.

On completion of construction works the Contractor will ensure that all waste and polluting material is removed from the site and is disposed of using appropriately authorised contractors. The Contractor shall, as appropriate, undertake visual and ecological rehabilitation of site compound and other areas no longer to be used by the Contractor. Following site clearance and rehabilitation the Employer or Employer's Representative will undertake a final inspection of the site. Any environmental issues identified during the final inspection will be raised with the Contractor. Mitigation measures and timeframes for completion will be agreed between the Contractor and the Employer's Representative in line with agreed procedures prior to final sign off.

6.12 Health and safety

The Contractor will ensure all relevant health and safety, fire safety and security requirements are in place prior to the commencement of construction and in accordance with the relevant legislation requirements in addition to the specifications of Limerick Twenty Thirty DAC.

Relevant Irish and EU health and safety legislation will be complied with at all times by all construction staff and personnel during construction. Further, the Contractors will also have to ensure that all aspects of their works comply with good industry practice and all necessary consents, licenses and authorisations have been put in place for the proposed development.

6.13 Visitor Management

Visitors will only be allowed to enter the main site compound via a designated pedestrian access points. A dedicated, secured footpath to the site office will be established at the gate for registration and obtaining PPE prior to entering the site. A log will be maintained by security to control access to the site. Visitors will be required to attend a sitespecific induction to allow access to the compound and/or construction site unless being accompanied by an inducted member of the site team.

Visitors will then be taken by an inducted member of the construction team to the required area of the site.

6.14 Construction Traffic and Site Access

The proposed construction vehicle routes for the site will require a traffic management plan to be agreed upon with, Limerick Twenty Thirty DAC, Limerick City and County Council (LCCC) and TII prior to site workings beginning. A Construction Stage Traffic Plan will be prepared post-planning. Advanced warning signs will be placed at sufficient distances to taper off the entry and exit points. Pedestrian marshals will be used as and when required. The proposed

construction vehicle routes for the site are shown in Figures 2-3 to 2-11 in Section 2 of this document (noting the site access constraints associated with Stonepark Terrace).

The traffic plan will be such that it will minimise the interaction between the construction site and the local residential areas. Traffic management will be undertaken for the site works in accordance with the principles outlined below and shall comply at all times with the requirements of:

- Department of Transport Traffic Signs Manual 2010 Chapter 8 Temporary Traffic Measures and Signs for Roadworks
- Department of Transport Guidance for the Control and Management of Traffic at Road Works (2010)
- Any additional requirements detailed in Design Manual for Urban Roads & Streets (DMURS)

It should be noted that construction traffic generated during the Construction Phase tends to be outside of peak hours. All construction activities will be agreed with LCCC's Roads Department prior to the commencement of the Construction Phase. In general, the impact of the construction period will be temporary in nature. HGV vehicle movements per hour during the busiest period of construction works are estimated at a peak of 20 HGVs per hour arriving and leaving, but the exact figure will be confirmed by the contractor. Refer to logistical and construction considerations which illustrate indicative locations for access, egress, site compounds, hoarding etc. for each stage (Stage 1-9) in Figures 2-3 to 2-11 in Section 2 of this document.

The following key requirements will also be adhered to by the contractor(s) during each stage:

- During Stage 1, the construction of the proposed 3no. bat houses will use the existing site access and egress.
 Refer to Figure 2-3
- During Stage 2, demolition and extraction of demolition waste will use existing site access and egress, with a new
 proposed access point along NCR (following demolition of 2no. houses to create accessible link into the site,
 referred to as Structures 14 in proposed demolition plan, Figure 2-12). Refer to Figure 2-4.
- During Stage 3:
 - Vehicular construction access to Fernhill will be from the west along NCR only during this period.
 - The resurfacing of the road at Stonetown Terrace and the junction with O'Callaghan Strand will be carefully managed to enable continued access to the properties along Stonetown Terrace and the Landsdowne Hall apartments.
 - Vehicular construction access to Stonetown Terrace will be from the north along OCS only whilst the NCR is being raised.
 - The raising of the required section of the NCR (Phase A) and the required section of OCS (Phase B) will not overlap. One phase of road infilling will be completed before the other begins to ensure continued vehicular access to St. Michaels Rowing Club at all times during the works, either via. OCS or NCR. Refer to Figure 2-5.
- During Stage 4 (Salesians development), vehicular construction access will be from NCR, with potential ramp to rear of the site. Potential vehicular construction access to upper level of site will be provided via. new Stage 2 access point along NCR. Refer to Figure 2-6.
- During Stage 5 (Stonetown Terrace development), vehicular construction access will be from NCR, with vehicular construction access to Salesians construction site occurring in parallel, at the same access / egress points along NCR. Construction access will be provided to the upper level of Stonetown Terrace, via the proposed temporary reservoir infilling works. A construction ramp to the north of the site will also be required to access the upper level of Stonetown Terrace. Refer to Figure 2-7.
- During Stage 6 (O'Callaghan Strand development), vehicular construction access / egress will be from NCR, via.
 Flaxmill Plaza. Refer to Figure 2-8.
- During Stage 7 (PBSA development), vehicular construction access / egress will be from NCR, via. temporary reservoir infill, and via. Flaxmill Plaza. Refer to Figure 2-9.

- During Stage 8 (Flaxmill Plaza development), vehicular construction access / egress will be from NCR, via.
 Flaxmill Plaza . Refer to Figure 2-10.
- During Stage 9 (Shipyard Mobility Hub development), vehicular construction access / egress will be from NCR,
 via 2no. (existing and proposed) points to the Shipyard Mobility Hub site. Refer to Figure 2-11.

6.14.1 Construction Traffic Management

Below is a list of the proposed traffic management measures to be adopted during the construction works.

- Warning signs / Advanced warning signs will be installed at appropriate locations in advance of the construction access locations;
- Construction and delivery vehicles will be instructed to use only the approved and agreed means of access; and movement of construction vehicles will be restricted to these designated routes;
- Appropriate vehicles will be used to minimise environmental impacts from transporting construction material, for example the use of dust covers on trucks carrying dust producing material;
- Speed limits of construction vehicles to be managed by appropriate signage, to promote low vehicular speeds within the site;
- Parking of site vehicles will be managed and will not be permitted on public road, unless proposed within a
 designated area that is subject to traffic management measures and agreed with LCCC;
- A road sweeper will be employed to clean the public roads adjacent to the site of any residual debris that may be deposited on the public roads leading away from the construction works;
- On site wheel washing will be undertaken for construction trucks and vehicles to remove any debris prior to leaving the site, to remove any potential debris on the local roads;
- All vehicles will be suitably serviced and maintained to avoid any leaks or spillage of oil, petrol or diesel. Spill kits
 will be available on site. All scheduled maintenance carried out off-site will not be carried out on the public
 highway; and
- Safe and secure pedestrian facilities are to be provided where construction works obscure any existing pedestrian
 footways. Alternative pedestrian facilities will be provided in these instances, supported by physical barriers to
 segregate traffic and pedestrian movements, and to be identified by appropriate signage.
- Pedestrian facilities will cater for vulnerable users including mobility impaired persons. The mitigation measures will therefore ensure that the presence of construction traffic will not lead to any significant environmental degradation or safety concerns in the vicinity of the proposed works. Furthermore, it is in the interests of the construction programme that deliveries, particularly concrete deliveries are not unduly hampered by traffic congestion, and as a result continuous review of haulage routes, delivery timings and access arrangements will be undertaken as construction progresses to ensure smooth operation.

6.14.2 Traffic Queuing

Material deliveries and collections from site will be planned, scheduled and staggered to avoid any unnecessary buildup of construction works related traffic. Deliveries to site shall be booked in advance using a delivery schedule, so as to prevent lorry congestion on the road networks surrounding the site. Alternative safe routeways shall be established for traffic and pedestrians where existing routeways have to be altered, removed or worked on during the project.

It has been robustly assumed that during construction of any one zone, there will be no more than 20 additional construction vehicular trips per hour (10 in / 10 out).

A preliminary Traffic management plan (TMP) has been developed for this planning application and is presented in Appendix B of this CEMP.

management plan which includes conditions imposed by Limerick City and County Council (LCCC).

Please note that it will be the appointed contractor's responsibility to prepare a detailed construction traffic

7. Environmental Management and Controls

It should be noted that this section provides a summary of minimum requirements that will be developed by the Contractor when preparing the Detailed CEMP. The Contractor(s) will also take account of all supporting documentation issued with this planning application, including the full EIAR (including implementation of all relevant EIAR mitigation measures), as submitted, all relevant planning conditions attached to any grant of planning, and any changes /updates to relevant statutory requirements and best practice standards when preparing the Detailed CEMP.

The mitigation measures relevant to each environmental factor outlined in Chapters 6.0 to 20.0 of the EIAR, as well as the CEMP, will be implemented during the Construction Phase of the development and will collectively mitigate the risk of major accidents and disasters during this time.

The Construction Phase of the Proposed Development will be carried out in accordance with best practice site management measures relating to health and safety and emergency response. These measures are described in the CEMP.

Appropriate assessment of the chimney and quarry during construction and developmental phases are proposed to reduce the risk of major accident and / or disaster.

7.1 Waste & Utilities Management

Construction and demolition activities produce a broad range of wastes, which will be outlined in the CDRWMP.

This section identifies the potential types of waste which will arise from construction and provides guidance on the management, control and disposal of waste and utilities.

7.1.1 Risk Identification

Table 7-1 - Example of Waste Management Risk Assessment

	Risk Assessment	Example Procedure
01	Identify the location of all sensitive receptors within or adjacent to the construction site.	Mark up on a site plan with the location of all adjacent housing/commercial centres, schools and educational establishments, agricultural land and other potential receptors. This will help the planning of the overall layout of the construction site and enable the identification of suitable sites for high risk activities such as waste storage areas.
02	Identify the construction activities and sources that will result waste production and waste storage, segregation and disposal requirements.	These could include excavations, chemical and materials use, waste storage and bulking areas etc,
03	Implement mitigation to eliminate or reduce risks.	Use the following hierarchy to manage waste: Prevent - Do not generate the waste in the first place. Re-use – Can you re-use without treatment?

Recycle – Make sure that wastes are properly segregated to aid recycling.

Disposal with energy recovery.

Disposal without energy recovery.

7.1.2 Waste & Utilities Management

Contractors will develop, implement and maintain a Waste Management Plan that is in compliance with Limerick City and County Development Plan 2022-2028, and EPA (2021) 'Best Practice Guidelines for the preparation of resource & waste management plans for construction & demolition projects'. The plan will include but not be restricted to the mitigation measures below (Table 7.2).

Table 7-2 – Waste & Utilities Management Mitigation Measures

Activity

Mitigation Measures

Waste EIAR Chapter (Demolition Phase Mitigation Measures)

Mitigation measures aim to minimize the impact on the environment of the proposed development through good material resource efficiency practices. All materials consumed and waste generated by will be managed in accordance with circular economy principles and the waste hierarchy, with prevention, reuse, recycling, and other recovery methods favored over disposal.

A Pre-demolition Waste Audit (PDWA) was prepared in 2025 by AtkinsRéalis. This will be updated based on a survey of the structures on the site prior to commencement of demolition works, in accordance with the EU Construction & Demolition Waste Management Protocol including guidelines for pre-demolition and pre-renovation audits of construction works. Proposed mitigation measures to support optimal rates of reuse, recycling and recovery, and waste prevention, in accordance with circular economy principles and waste hierarchy principles include but are not limited to the following;

- In accordance with circular economy principles waste generated will be considered for reuse on site or off -site where applicable. These include
 - Re-using blockwork on site or off site. If this is deemed not feasible, inert
 waste (concrete and blockwork) will be crushed and graded into recycled
 aggregate that can be re-used for back fill on site or elsewhere
 - Metal components will be considered for recycling to produce high-quality metal products
 - uPVC downpipes in good condition will be re-used off site
 - Timber components in acceptable condition, i.e. internal doors will be first considered for reuse either on or off site
 - A Resource Recovery Plan mapping out the materials streams proposed to be re-used and recycled along with the proposed outlets / end uses should be developed for material arisings in specific buildings or structures which have been identified as having medium / high reuse or recycling potential
- Demolition material that is not suitable for reuse on site or which is surplus to requirements, will be stockpiled, tested and classified. Where feasible classification for reuse on other construction site(s) will be considered. Where the material is not suitable for reuse, it will be categorised in accordance with the EPA waste classification guidelines.
- Demolition material that is deemed hazardous will be treated at an authorised facility either in Ireland or abroad. Export of hazardous waste from the proposed

- development outside of the State is subject to the Waste Shipment Regulation, as described above. Export of hazardous waste from site outside the state will comply with the procedures set out in this legislation
- All waste arising from the proposed development will be managed in line with the
 principles and objectives set out in the CDRWMP (ARUP 2025) ensuring compliance
 with best practice in prevention, segregation, recovery and disposal and align with
 regional waste infrastructure principles and policy.
- Licensed local waste management facilities will be contracted to manage waste arising from demolition works

As part of the asbestos management strategy, mitigation specific measures have been proposed by Phoenix Environmental Safety Ltd in their 2025 Asbestos Survey Report. These measures include, but are not limited to

- Asbestos containing materials should be removed prior to the commencement of any works
- A licensed asbestos removal contractor should be contracted for removal and disposal of asbestos waste; and
- All asbestos removal works shall be undertaken in full compliance with the Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006–2010 (S.I. No. 386 of 2006).

The appointed contractor will adhere to all regulatory requirements and follow the recommendations outlined in the survey report, including the implementation of robust control measures to prevent exposure to asbestos material.

Waste EIAR Chapter (Construction Phase Mitigation Measures) Effective waste management during the construction phase is essential to minimise environmental impacts, ensure regulatory compliance, and promote sustainable construction practices. The proposed development will generate various waste streams, including surplus materials, packaging, and general construction debris. To address these, a range of mitigation measures will be implemented to reduce, reuse, and responsibly dispose of waste throughout the construction period as proposed in the CDRWMP (ARUP 2025). These measures will be guided by relevant legislation, regional waste policies, and best practice standards, and will be integrated into the overall Construction Environmental Management Plan (CEMP).

The following mitigation measures will be implemented during the construction phase:

- All waste management procedures implemented onsite during the construction
 phase will be in accordance with the CDRWMP (AtkinsRéalis, 2025) submitted as
 part of this planning application. In advance of commencement onsite, the
 Contractor will prepare a project specific Detailed CRWMP which will further develop
 this plan, and will provide specific details in terms of proposed permitted haulage
 contractors, and permitted / licenced waste disposal / recovery facilities;
- Scheduling and planning the delivery of materials will be carried out on an 'as needed' basis to limit any surplus materials;
- Materials will be ordered in sufficient dimensions so as to optimise the use of these
 materials onsite, and will be carefully handled and stored so as to limit the potential
 for any damage;
- Where feasible, sub-contractors will be responsible for the provision of any materials they require onsite in order to help reduce any surplus waste;
- Waste materials generated will be segregated at the site compound, where it is practical to do so. Where the on-site segregation of certain waste types is not practical, offsite segregation will be carried out.

- There will be skips and receptacles provided to facilitate segregation at source and
- All loaded trucks entering and exiting the Site will be appropriately secured and covered
- Excessive temporary works will be avoided. Existing facilities will be reused as appropriate.
- Paints, sealants and hazardous chemicals will be stored in secure, bunded locations and
- The contractor will ensure that only licensed waste contractors are engaged for the transport of waste, and that all waste is directed to appropriately licensed waste facilities or treatment, recovery, or disposal, as required.

Waste EIAR Chapter Monitoring

During the construction phase, waste management activities will be monitored by the Contractor's appointed Resource Manager to ensure full compliance with the mitigation measures outlined in this report, as well as all relevant waste management legislation and local authority requirements.

The Contractor will be responsible for maintaining comprehensive waste records throughout the duration of the construction phase. All waste volumes transported off-site will be tracked and monitored, with documentation retained on-site and made available for review as required

Utilities EIAR Chapter Mitigation Measures

The following mitigation measures will also be implemented during the demolition phase:

- A project-specific Detailed Construction Environmental Management Plan (CEMP) will be prepared by the appointed Contractor prior to the commencement of demolition / construction works. This document will take account of all of the environmental considerations (including water, dust and noise nuisance control; soil/stockpile management; temporary groundwater management; appropriate site management of compound area; fuel, oil and chemical storage and use; and waste management) set out in the Outline CEMP submitted as part of this planning application;
- All works will be carried out in strict accordance with the guidelines of the relevant stakeholders (specifically ESB, eir and Uisce Éireann), Health and Safety and any additional site specific requirements;
- A copy of all available existing, and as built utility plans will be maintained onsite during the demolition phase, and;
- The underground power lines and foul water mains within the existing Uisce Éireann services, located onsite will be clearly marked and all Site personnel will be made aware of the known location of any onsite underground or over ground services during the construction phase.

The following mitigation measures will be implemented during the construction phase:

- A project-specific Detailed Construction Environmental Management Plan (CEMP) will be prepared by the appointed Contractor prior to the commencement of construction works. This document will take account of all of the environmental considerations (including water (specifically stormwater runoff), dust and noise nuisance control; soil/stockpile management; temporary groundwater management; appropriate site management of compound area; fuel, oil and chemical storage and use; and waste management) set out in the Outline CEMP submitted as part of this planning application;
- All newly installed utilities/services will be assessed, tested and certified as required prior to being fully commissioned;

- The construction compounds will include adequate temporary welfare facilities including foul drainage and potable water supply. Foul drainage discharge from the compound will be removed off site to an appropriately licensed facility for disposal until a connection to the public foul drainage network has been established;
- Connections to the existing and proposed foul networks will be coordinated with
 the relevant utility provider. All works associated with the existing and proposed
 utilities for the proposed development will be carried out in strict accordance with
 the guidelines of the relevant stakeholders (specifically ESB, eir and Uisce
 Éireann), Health and Safety and any additional site specific requirements;
- A copy of all available existing, and as built utility plans will be maintained onsite
 during the construction of the proposed development. The underground power
 lines and foul water mains within the existing Uisce Éireann services, located
 onsite will be clearly marked and all Site personnel will be made aware of the
 known location of any onsite underground or over ground services during the
 construction phase and,
- Street Lighting will be implemented in accordance with the lighting report prepared by Arup (2025).
- Telecommunications infrastructure will be installed in accordance with the ISM (2025) report, submitted as part of this planning application.

Monitoring

The Contractor will be responsible for maintaining records and documentation for the full duration of the demolition and construction phase, including all relevant paperwork during commissioning of new services.

7.2 Air Quality & Climate

Construction activities have the potential to impact on air quality through the creation of dust and emissions to air from vehicles and plant, along with activities including infilling of soil, excavation of trenches, stockpiling and movement of materials may all contribute to generating ambient dust. This section identifies the potential causes of air pollution which may arise from construction and provides guidance on the management and control of emissions from site.

7.2.1 Risk Identification

Contractors shall undertake a qualitative risk assessment or appraisal prior to the commencement of construction activities. An example risk assessment is shown in Table 7.3.

Table 7-3 - Example of Air Quality Risk Assessment

	Risk Assessment	Example Procedure
01	•	Mark a site plan with the location of all adjacent housing/commercial centres, schools and educational establishments, agricultural land and other potential receptors. This will help the planning of the overall layout of the construction site and enable the identification of suitable sites for high risk activities such as material storage areas, re-fuelling points and haul routes.

	Risk Assessment	Example Procedure
02	Identify the construction activities and sources of pollution that will result in emissions to air.	These could include excavations, concrete use, transport, materials storage, traffic management etc.
03	Evaluate the risk of the construction activities resulting in emissions to air.	Assess the likelihood of an activity causing pollution. Assess the significance of the harm pollution would cause to a particular receptor. For example, the impact of dust in a populated urban area would be significantly greater than dust in an unpopulated rural area.
04	Implement mitigation to eliminate or reduce risks.	Use the following hierarchy to manage the risk: Remove the risk (different construction methods/activities). Control the source (modify construction methods, covers for storage areas). Protect the receptor (provide hard standing and covering for compounds/storage areas, filter, control, contain emissions, ensure appropriate environmental permits are in place). Put emergency procedures in place.

7.2.2 Air Quality & Climate Management Plan

Contractors will develop, implement and maintain an Air Quality Management Plan. The plan will include but not be restricted to the mitigation measures below (Table 7.4).

Table 7-4 - Air Quality & Climate Mitigation Measures

Activity Mitigation Measures The proposed development has been assessed as having a high risk of dust soiling and ecology Air **EIAR** impacts and a low risk of dust related human health impacts during the construction phase as a Chapter result of demolition, earthworks, construction and trackout activities (see Section 14.5.1 of Chapter Mitigation 14 of the EIAR). Therefore, the following dust mitigation measures shall be implemented during the Measures construction phase of the proposed development. These measures are appropriate for sites with a high risk of dust impacts and aim to ensure that no significant nuisance occurs at nearby sensitive receptors. These measures are also applicable to rock breaking activities that are required on site. The mitigation measures draw on best practice guidance from Ireland (DCC (2018), DLRCC (2022)), the UK (IAQM (2024), Defra (2012), BRE (2003), The Scottish Office (1996), UK ODPM (2002)) and the USA (USEPA, 1997). These measures will be incorporated into the Construction

Construction Dust Management Measures

different categories for different activities (see Table below).

Mitigation Type	Location	Description of Mitigation or Monitoring Measures
Communications	Construction Compound/Site Boundary and throughout (as required)	be responsible for se standing the day to day

Environmental Management Plan (CEMP) prepared for the site. The measures are divided into

	for performing inspections as deemed necessary and manage responses to environmental incidents. The name and contact details of the EM will be responsible for construction dust management and air quality issues will be displayed at the construction compound/site boundary hoarding, as well as head/regional office contact details. A complaints register will be kept by the appointed contractor detailing all telephone calls and letters of complaint received in connection with dust nuisance or air quality concerns, together with details of any remedial actions carried out. Previously established community engagement with neighbouring business will continue for the remainder of the construction works.
Construction Construction Compound/Site Works AreaBoundary and Management throughout (as required)	 Construction compounds will be laid out so that machinery and dust causing activities such as stockpiles are located away from receptors, as far as is practicable. The appointed contractor will provide a site hoarding of 2.4m height along noise sensitive boundaries, at a minimum, at the Construction Compounds, which will assist in minimising the potential for dust impacts off-site. Construction works area fencing, barriers and scaffolding will be kept clean using wet methods. Stockpiles will be covered to prevent wind whipping. Any chutes and conveyors will be enclosed, and skips will be covered. Drop heights from any conveyors, loading shovels, hoppers and other loading or handling equipment will be minimised. Fine water sprays will be used on such equipment where visible dust plumes are generated. Cutting, grinding or sawing equipment will be fitted with or used in conjunction with suitable dust suppression techniques such as water sprays or local extraction, e.g. suitable local exhaust ventilation systems. Equipment will be readily available in the construction works areas site to clean any dry spillages. Spillages will be cleaned up as soon as reasonably practicable after the event using wet cleaning methods. An adequate water supply for effective dust or particulate matter suppression and mitigation will be ensured, and non-potable water will be used

		Construction works area runoff of water or mud will be managed as per the Surface Water
		Management Plan
Operating Vehicles / Machinery	Construction Compound/Site Boundary and throughout (as required)	
Demolition Activities	Areas where demolition is required	 During the demolition process, any cutting, grinding or sawing equipment will be fitted or used in conjunction with a suitable dust suppression technique such as water sprays or local extraction. Prior to demolition blocks will be soft stripped inside buildings (retaining walls and windows in the rest of the building where possible, to provide a screen against dust), as necessary. Drop heights from conveyors, loading shovels, hoppers and other loading equipment will be minimised, if necessary fine water sprays will be

		 Deposits of dust on external parts of any crushing plant will be cleaned off at the end of each working day in order to minimise the potential for wind entrainment.
Earthworks Activities	Areas where earthworks are required	 Materials with the potential to produce dust, such as excavated material, will be removed from the construction works area as soon as possible, unless being re-used within the construction works area. Management of extracted material is detailed in the Construction and Demolition Resource and Waste Management Plan. Areas exposed by earthworks will be re-vegetated to stabilise surfaces as soon as practicable. Hessian, mulches or trackifiers will be used where it is not possible to re-vegetate or cover with topsoil, as soon as practicable. Cover will only be removed in small areas during work and not all at once. During dry and windy periods and when there is a likelihood of dust nuisance (defined under "Monitoring" measures below), water-based dust suppression (e.g. bowser) will operate to ensure soil moisture content is high enough to increase the stability of the soil and thus suppress dust.
Construction Activities	Areas where construction is required	 Sand and other aggregates will be stored in bunded areas and will not be allowed to dry out, unless this is required for a particular process. Smaller supplies of fine power materials bags will be sealed after use and stored appropriately to prevent dust escaping.
Measures specific to trackout (transport of dust and dirt from the construction works areas onto the public road network)	Construction Compound/Site Boundary and	 A speed restriction of 15 kph will be applied as an effective control measure for dust for on-site vehicles. Vehicles transporting loose materials (e.g. spoil or sand) entering and leaving the Proposed Scheme works areas and construction compounds will be covered with tarpaulin to prevent escape of materials during transport. Before entrance onto public roads, trucks will be checked to ensure the tarpaulins are properly in place. Where construction work area or construction compound conditions result in large amounts of mud building up on truck wheels, wheel washing will be carried out for trucks before they use the public road network. Water-assisted dust sweeper(s) will be used at the access points to a construction compound and the immediate adjoining local road, to remove, as necessary, any material tracked out of the compound.

		 Any on-site haul routes will be inspected for integrity and necessary repairs to the surface will be carried out as soon as reasonably practicable.
Monitoring	Construction Compound/Site Boundary and throughout (as required)	 To determine if any short-term dust impacts will occur, a minimum of daily visual inspections for dust soiling of receptors (including roads, and surfaces such as street furniture, cars and windowsills) adjoining the construction works areas will be undertaken. Inspection results will be recorded in the site inspection log. Cleaning will be provided, if necessary, such as in the event of a dust complaint resulting from the Proposed Scheme construction works. The potential for dust generation increases when rainfall is less than 0.2 mm/day and at wind speeds of greater than 10 m/s. To determine if these conditions are likely to affect the site, the weather forecast will be consulted daily, specifically the hourly forecasts for wind speeds as well as 12-hour rainfall radar showing anticipated amounts of precipitation in mm. The frequency of site inspections by the EM responsible for dust management will be increased to a minimum of twice daily during the above conditions. The effectiveness of dust control methods will be monitored via visual inspections and work that would generate dust (e.g. moving materials from stockpiles or transferring loose dry materials from trucks) will be limited in so far as is practicable during these weather conditions.

Air Quality
EIAR
Chapter –
Monitoring
Requirement
s

The following monitoring measures are proposed to ensure the dust mitigation measures are working satisfactorily:

- To determine if any short-term dust impacts will occur, a minimum of daily visual
 inspections for dust soiling of receptors (including roads, and surfaces such as street
 furniture, cars and windowsills) adjoining the construction works areas will be undertaken.
 Inspection results will be recorded in the site inspection log. Cleaning will be provided, if
 necessary, such as in the event of a dust complaint resulting from the Proposed Scheme
 construction works.
- The potential for dust generation increases when rainfall is less than 0.2 mm/day and at wind speeds of greater than 10 m/s. To determine if these conditions are likely to affect the site, the weather forecast will be consulted daily, specifically the hourly forecasts for wind speeds as well as 12-hour rainfall radar showing anticipated amounts of precipitation in mm.
- The frequency of site inspections by the EM responsible for dust management will be increased to a minimum of twice daily during the above conditions. The effectiveness of dust control methods will be monitored via visual inspections and work that would generate dust (e.g. moving materials from stockpiles or transferring loose dry materials from trucks) will be limited in so far as is practicable during these weather conditions.
- Monitoring of construction dust deposition along the site boundary to nearby sensitive receptors (as identified in Section 14.3.3, Chapter 14 of the EIAR) during the construction

phase of the proposed development is recommended to ensure mitigation measures are working satisfactorily. This can be carried out using the Bergerhoff method in accordance with the requirements of the German Standard VDI 2119. The Bergerhoff Gauge consists of a collecting vessel and a stand with a protecting gauge. The collecting vessel is secured to the stand with the opening of the collecting vessel located approximately 2m above ground level. The TA Luft limit value is 350 mg/m²/day during the monitoring period of 30 days (+/- 2 days). Monitoring shall ensure that the dust mitigation measures are working satisfactorily as construction works progress.

Climate EIAR Chapter Mitigation Measures Embodied carbon of materials and construction activities will be the primary source of climate impacts during the construction phase. In relation to mitigating construction phase GHG emissions, the Circular Economy Statement, Construction and Demolition Resource and Waste Management Plan (CDRWMP) and Chapter 18 Material Assets – Waste Management (submitted as part of the planning application) detail strategies for managing demolition and construction waste and minimising GHG emissions. These are summarised below.

During the construction phase the following best practice measures will be implemented on site to prevent significant GHG emissions and reduce impacts to climate:

- Prevention of on-site or delivery vehicles from leaving engines idling, even over short periods.
- Ensure all plant and machinery are well maintained and inspected regularly.
- Minimising waste of materials due to poor timing or over ordering on site will aid to minimise the embodied carbon footprint of the site.
- The CDRWMP provides a detailed breakdown of the estimated resource and waste arisings from the proposed deconstruction and demolition works, and a strategy for the management of these streams (which will minimise demolition and construction waste sent of landfill). Recycling of materials will be promoted to and reduce the environmental footprint of the site.
- Sourcing materials locally will be prioritised. This will help to reduce transport related CO₂ emissions and helps support local suppliers, further promoting economic sustainability.
- Material choices and quantities will be reviewed during detailed design, to identify and implement any lower embodied carbon options, where feasible. For example, a 30% minimum clinker replacement in cement may be utilised in line with the requirements for public bodies.
- The Salesians Individual town house units will be built of timber frame. Timber is not as carbon intensive as other materials and is a preferable structural material to traditional concrete blocks. Both the Climate Change Advisory Council (CCAC) and National Climate Action Plan advise for the use of timber framed buildings as a construction method. Timber frames have the additional benefit of having absorbed carbon from the atmosphere during their growth and providing a long-term carbon sink during their lifetime in the building.

In terms of impact on the proposed development due to climate change, during construction the Contractor will be required to mitigate against the effects of extreme rainfall/flooding through site risk assessments and method statements. The Contractor will also be required to mitigate against the effects of extreme wind/storms, temperature extremes through site risk assessments and method statements. All materials used during construction will be accompanied by certified datasheets which will set out the limiting operating temperatures. Temperatures can affect the performance of some materials, and this will require consideration during construction. During construction, the Contractor will be required to mitigate against the effects of fog, lighting and hail through site risk assessments and method statements.

Climate EIAR Chapter Monitoring Requirement Monitoring and reporting of the embodied carbon in the construction phase will be conducted. The aim of monitoring will be to seek further ways to minimise climate impacts. Monitoring will include contractual obligations, in line with the most recent Climate Action Plan and sectoral targets, for the successful tenderer to ensure that the proposed development stays in line with updated aims. Commitments to monitor GHG emissions during the construction phase will also be secured through the final Construction Environmental Management Plan (CEMP). Monitoring will include embodied carbon of construction materials, water usage, power and fuel usage, and waste generation (including reuse and recycling rates). Where monitoring shows that the proposed development is not meeting its targets, further mitigation will be put in place.

Monitoring should also include reviewing potential for extreme weather events which may cause damage during construction. Contractors' Environmental Management System (EMS) will include measures to address risks during such events i.e. flooding.

7.3 Construction Noise and Vibration

Construction activities can produce a significant amount of noise and vibration with the potential to impact adversely on a range of receptors. This section identifies the potential causes of noise and vibration which may arise from construction and provides guidance on management and control.

7.3.1 Risk Identification

An example risk assessment is shown in Table 7.5.

Table 7-5 - Example of Noise and Vibration Risk Assessment

	Risk Assessment	Example Procedure
01	Identify the location of all sensitive receptors within or adjacent to the construction site.	Mark up on a site plan the location of all nursing homes, housing/commercial centres, schools and educational establishments, agricultural land and other potential receptors.
		This will help the planning of the overall layout of the construction site and enable the identification of suitable sites for noisy activities or activities likely to cause vibration such as generators, compressors, haul routes and drilling.
03	Identify the construction activities that may affect the receptors identified.	These could include excavations, dewatering, traffic movements, warning sirens, use of machinery and plant etc.
04	Evaluate the risk of the construction activities impact on receptors.	Assess the likelihood of an activity causing noise pollution. Assess the significance of the noise impact on particular receptors. For example, the impact of noise from construction activities adjacent to housing would be significantly greater than the impact of noise in an uninhabited rural area.
05	Implement mitigation to eliminate or reduce risks.	 Use the following hierarchy to manage the risk: Remove the risk (different construction methods, substitution of materials for less noisy options). Control the source (modify construction methods, provide
		adequate baffling). 3. Protect the receptor using noise barriers, screening etc

Risk Assessment	Example Procedure
	4. Put emergency procedures in place.

7.3.2 Noise and Vibration Management Plan

Contractors will develop, implement and maintain a Noise and Vibration Management Plan.

Table 7-6 - Noise and Vibration Mitigation Measures

Activity Mitigation Measures

Chapter 13, EIAR

- Best practice noise and vibration control measures will be employed by the contractor during the construction phase in order to avoid significant impacts at the nearest sensitive buildings. The best practice measures set out in BS 5228-1 and BS 5228-2 (BSI 2019) will be complied with. The above documents include guidance on several aspects of construction site mitigation measures, which include:
 - Selection of quiet plant;
 - Noise control at source;
 - Screening;
 - · Liaison with the public, and;
 - Monitoring.

Noise control measures that will be considered include the selection of quiet plant, use of enclosures and screens around noise sources and site boundaries, limiting the hours of work and noise and vibration monitoring.

Selection of Quiet Plant

The potential for any item of plant to result in exceedance of construction noise thresholds will be assessed prior to the item being brought onto the site. The least noisy item of plant will be selected wherever practicable (e.g. plant items with sound attenuation incorporated). Should a particular item of plant already on the site be found to exceed the construction noise thresholds, the first action will be to identify whether the item can be replaced with a quieter alternative.

The appointed contractor will evaluate the choice of excavation, breaking, piling or other working method taking into account various ground conditions and site constraints. Where alternative lower noise generating equipment are available that will provide equivalent structural / excavation / breaking results, these will be selected to control noise within the relevant thresholds, where it is practicable to do so.

The decision regarding the type of excavation technique or other construction activity to be used on a site will normally be governed by a range of engineering and environmental constraints. In these instances, it may not be possible for technical reasons to replace an item of plant with a quieter alternative. In some instances, the adoption of a quieter method may prolong the overall process, with the net result being that the overall disturbance to the community will not necessarily be reduced.

Noise Control at Source

The following measures will be implemented, if required, by the appointed contractor to control noise at source. These measures relate to specific site considerations:

• For mobile plant items such as dump trucks, cranes, excavators and loaders, the installation of an acoustic exhaust, utilising an acoustic canopy to replace the normal engine

cover and / or maintaining enclosure panels closed during operation can reduce noise levels by up to 10 dB;

- For percussive tools such as pneumatic breakers and tools a number of noise control
 measures include fitting a muffler or sound reducing equipment to the breaker 'tool' and
 ensuring any leaks in the air lines are sealed;
- Use of rotary drills and 'bursters' activated by hydraulic or electrical power to facilitate quieter methods for excavation of hard material.
- Removal of larger sections of demolished buildings by lifting out and breaking at areas away from noise sensitive boundaries;
- For piling plant, noise reduction can be achieved by enclosing the driving system in an
 acoustic shroud. For steady continuous noise, such as that generated by diesel engines, it
 is possible to reduce the noise emitted by fitting a more effective exhaust silencer system
 or utilising an acoustic canopy to replace the normal engine cover;
- Mobile and stationary plant will be switched off or throttled back to a minimum when not in
 use (engines, motors and generators). Lorries, trucks and concrete vehicles will not be
 permitted to queue outside site compounds with engines left idling;
- Where compressors, generators and pumps are located in proximity to NSLs and have the
 potential to exceed the construction noise thresholds, these will be surrounded by acoustic
 lagging or enclosed within acoustic enclosures providing air ventilation;
- Resonance effects in panel work or cover plates can be reduced through stiffening or the application of damping compounds, while other noise nuisance can be controlled by fixing resilient materials in between the surfaces in contact;
- For all materials handling, ensure that materials are not dropped from excessive heights, lining drops chutes and dump trucks with resilient materials;
- All items of plant will be subject to regular maintenance. Such maintenance can prevent unnecessary increases in plant noise and can serve to prolong the effectiveness of noise control measures:
- Where practicable, equipment powered by mains electricity or battery shall be used in preference to equipment powered by internal combustion engines or locally generated electricity; and
- Plan the site layout to ensure that reversing is kept to a minimum.

Screening

Screening is an effective method of reducing construction noise levels at a receiver location and can be used successfully as an additional measure to other forms of noise control. The effectiveness of a noise screen will depend on the height and length of the screen, its mass, and its position relative to both the source and receiver. BS 5228–1 states that on level sites the screen should be placed as close as possible to either the source or the receiver. The construction of the barrier will be such that there are no gaps or openings at joints in the screen material.

The site will incorporate a solid site hoarding line of minimum 2.4m in height around its perimeter which will be maintained in situ for the duration of the construction phase. Where necessary, this hoarding height will be increased in height to assist in reducing noise levels at adjacent noise sensitive buildings.

Erection of localised demountable enclosures or screens will be used around breakers or drill bits when in operation in proximity to NSLs with the potential to exceed the construction noise thresholds. Annex B of BS 5228–1 (Figures B1, B2 and B3) provide typical details for temporary and mobile acoustic screens, sheds and enclosures that can be constructed on-site from standard materials. A well placed and designed mobile temporary screen around a breaker or excavation can effectively reduce noise emissions by 10 dB(A).

In addition, careful planning of the construction site layout will also be considered. The placement of site buildings such as offices and stores between the site and sensitive locations can provide a good level of noise screening.

Hours of Work

Standard construction working hours are between 07:00 to 18:00 hrs Monday to Friday inclusive and between 08:00 and 14:00 hrs on Saturdays. However, it is possible that the contractor may wish to carry out certain operations outside these hours i.e. Sunday or evening hours during long summer days etc. Such occurrences will be kept to a minimum and take place over a short timeframe and as such are unlikely to cause excessive disturbance. Deviation from these times will only take places when written approval is granted by LCCC in exceptional circumstances.

Liaison with the Public

For the proposed development, the duration of demolition, piling and excavation and any required ground breaking will be short in relation to the length of construction work as a whole, and the amount of time spent working near to sensitive areas can represent only a part of the overall period.

The contractor will establish clear forms of communication between the contractor and adjacent NSLs to the works, so that residents or building occupants are aware of the likely duration of activities likely to generate noise or vibration that are potentially significant.

A community Liaison Plan will be developed by the developer in liaison with the local residents and the adjacent Salesians Primary school and a single point of contact nominated to engage with LCC.

Monitoring

During the construction phase, the contractor will carry out noise and vibration monitoring at representative sensitive locations to evaluate and inform the requirement and / or implementation of noise and vibration management measures.

Noise and vibration monitoring systems will be installed at the site prior to any works taking place and will be maintained in continuous operation throughout the construction period. The system will be configured to trigger alerts in the event that the set limit values relating to the control of significant noise effects are approaching, as per Chapter 13 of the EIAR and for the avoidance of any cosmetic damage to buildings as per Table 13.4, Chapter 13 of the EIAR.

As a minimum, a vibration monitor will be installed be installed adjacent to the Flaxmill complex and brick chimney, adjacent to these protected structures.

Vibration Control

On review of the likely vibration levels associated with construction activities, construction activities associated with the proposed development will not give rise to vibration that is either significantly intrusive or that would give rise to structural or cosmetic damage to buildings. Notwithstanding, is recommended that a review of any foundations relating to protected structures is undertaken prior to any significant excavations commence to ensure all direct connections between these structures and the proposed construction areas are severed to avoid any bridging and vibration transmission.

Vibration from construction activities will be limited to the values set out in Table 13.4, Chapter 13 of the EIAR to avoid any form of potential cosmetic damage to buildings and structures.

In the case of vibration levels giving rise to human response, impacts are significantly reduced once the source of vibration is known and good communications are in place. As such, in order to minimise any potential impacts to adjacent building occupants, the following measures shall be implemented during the Construction Phase.

- A clear communication programme will be established by contractor to inform adjacent building occupants in advance of any potential intrusive works which may give rise to vibration levels likely to result in significant effects as per Table 13.5, Chapter 13 of the EIAR. The nature and duration of the works will be clearly set out in all communication circulars as necessary; and
- Appropriate vibration isolation shall be applied to plant (such as resilient mounts to pumps and generators), where required and where feasible.

Monitoring

During the construction phase the contractor will carry out noise monitoring at representative NSLs to evaluate and inform the requirement and / or implementation of noise and or vibration management measures. Monitoring will be undertaken in line with 13.7.1.6, Chapter 13 of the EIAR.

During the construction phase, noise monitoring equipment will be installed along the site boundaries in closest proximity to the surrounding NLS. Noise monitoring will be conducted in accordance with the International Standard ISO 1996: Acoustics – Description, measurement and assessment of environmental noise Part 1 (2016) and Part 2 (2017). The result of the monitoring programme will be used to determined compliance with the construction noise thresholds and to inform the requirement and / or implementation of noise and or vibration management measures.

It is recommended that noise control audits are conducted at regular intervals throughout the construction programme in conjunction with noise monitoring. The purpose of the audits will be to ensure that all appropriate steps are being taken to control construction noise emissions and to identify opportunities for improvement, where required.

Vibration monitoring will be installed at the base of the two on-site protected structures during excavation works. It is also recommended to install vibration monitoring equipment along the western site boundary in proximity to the Salesians Primary School.

7.4 Prevention of Soil and Water Pollution

Construction activities have the potential to cause pollution to groundwater and/or soils and surface water. This section identifies the potential causes of pollution which may arise from construction and provides guidance on the management and control.

7.4.1 Risk Identification

Contractors shall undertake a qualitative pollution risk assessment or appraisal prior to the commencement of construction activities. An example risk assessment is presented in Table 7.7.

Table 7-7 - Example of Soil and Water Pollution Risk Assessment

	Risk Assessment	Example Procedure	
01	Identify the location of all sensitive receptors within or adjacent to the construction	Mark up on a site plan with the location of all water courses, surface water features, boreholes, field drains, ecologically sensitive areas, surface and foul drainage systems and other potential receptors.	
	site.	This will help the planning of the overall layout of the construction site and enable the identification of suitable sites for high risk activities such as chemical/fuel storage areas, refuelling points, haul routes and wash out areas.	
02	Identify sensitive receptors off site or downstream of the construction project that could potentially be affected by the works. For example water courses, ecologically sensitive areas.	prior to construction. Establish monitoring regime during construction as appropriate. Refer to Planning Environmental Considerations Report.	
03	Identify the construction activities and sources of pollution that may affect the water receptors identified.	well as general sources of pollution such as surface water runoff,	
04	Evaluate the risk of the	Assess the likelihood of an activity causing pollution.	
	construction activities polluting the identified water receptors.	Assess the significance of the harm pollution would cause to a particular water receptor. For example the impact of polluting a water receptor used for potable water would be significantly greater than the pollution of a foul water system.	
05	Implement mitigation to	Use the following hierarchy to manage the risk:	
	eliminate or reduce risks.	1. Remove the risk (different construction methods/activities).	
		 Control the source (change location, modify construction methods, provide adequate bunding for fuel and other storage areas, install measures such as silt fences or ditches to control runoff). 	
		 Protect the receptor (provide hard standing for compounds/storage areas, filter, control, contain discharges, ensure appropriate environmental permits are in place). 	
		4. Put emergency procedures in place.	

7.4.2 Pollution Prevention Management Plan

Contractors will develop, implement and maintain a Pollution Prevention Management Plan. The Plan will include but not be restricted to the mitigation measures below (Table 7.8).

Table 7-8 - Surface Water Mitigation Measures

Activity	Mitigation Measures
General Ensure that appropriate permits/consents are in place prior to commencing any de activities (if required).	
	Sample collections as required, such as for wastewaters and discharges to the ground and surface waters to facilitate characterisation of contaminants in the event of a leakage or spill that may impact soil or groundwater quality.

Activity

Mitigation Measures

Appropriate sampling of discharges, if required, to include key parameters to ensure discharges meet appropriate criteria.

Carry out regular inspections/audits of hazardous materials usage, handling and storage areas and regular/thorough maintenance of vehicles and hydraulic systems and sanitary/welfare facilities.

Avoid impacting adjacent sites by ensuring all contractors activities, equipment and waste storage is confined to the approved site boundary.

Where waste waters do not meet approved quality criteria they will be contained and disposed of via an approved disposal route.

Ensure regular and controlled disposal of waste using appropriately authorised contractors.

Weekly checks will be carried out to ensure surface water drains are not blocked by silt, or other items, and that all storage is located at least 10m from surface water receptors;

A regular log of inspections will be maintained, and any significant blockage or spill incidents will be recorded for root cause investigation purposes and updating procedures to ensure incidents do not reoccur.

Protection of Water - Water Quality

There will be no 'in water' works carried out within the designated River Shannon SAC during the demolition and/ or construction works, under any conditions.

With the exception of the existing discharge pipe to the River Shannon SAC (via. the onsite Reservoir), there will be no discharge of water directly to the River Shannon SAC during the demolition and/ or construction works.

A surface water management plan will be prepared for approval by LCCC prior to construction commencing.

Excavated materials will be visually assessed for signs of possible contamination such as staining or strong odours and sampling. Should it be determined that any of the soil excavated is contaminated, this will be segregated and appropriately disposed of by a suitably permitted/licensed waste disposal contractor;

Implementation of an appropriate earthworks handling protocol during construction. No stockpiling will be permitted within a 20 m buffer zones around the reservoir or the River Shannon SAC:

Silt reduction measures on site will include a combination of silt fencing and settlement measures;

A power washing facility or wheel cleaning facility will be installed near to the site compound for use by vehicles exiting the site when appropriate;

Aggregate materials such as sands and gravels will be stored in clearly marked receptacles within a secure compound area to prevent contamination;

Movement of material will be minimised to reduce the degradation of soil structure and generation of dust;

Excavations will remain open for as little time as possible before the placement of fill. This will help to minimise the potential for water ingress into excavations;

Weather conditions will be considered when planning construction activities to minimise the risk of run-off from the site;

The contractor will comply with all permit conditions, environmental regulations and legislation with regards to the safe storage and handling of hazardous substances.

Cement/Concrete Works

Where feasible all ready-mixed concrete will be brought to site by truck. A suitable risk assessment for wet concreting will be completed prior to works being carried out which will include measures to prevent discharge of alkaline wastewaters or contaminated storm water to the underlying subsoil;

No wash-down or wash-out of ready-mix concrete vehicles will be carried out at the site within any buffer zones. Wash-outs will only be allowed to take place in designated areas with an impervious surface where all wash water is contained and removed from site by road tanker or discharged to foul sewer subject to agreement with UE / LCCC;

Hydrocarbons and other Construction Chemicals

The construction contractor will be required to implement emergency response procedures, and these will be in line with industry guidance. All personnel working on the Site will be suitably trained in the implementation of spill control procedures and equipment. Guidelines such as "Control of Water Pollution from Construction Sites, Guidance for Consultants and Contractors" (CIRIA 532, 2001) will be complied with;

Provision of spill kit facilities across the Site;

Where mobile fuel bowsers are used, the following measures will be taken:

- Any flexible pipe, tap or valve will be fitted with a lock and will be secured when not in use;
- The pump or valve will be fitted with a lock and will be secured when not in use;
- All bowsers to carry a spill kit and operatives will have spill response training; and,
- Portable generators or similar fuel containing equipment will be placed on suitable drip trays.

Refuelling of construction vehicles and the addition of hydraulic oils or lubricants to vehicles will take place in a designated area or within the construction compound which will be away from surface water gulleys or drains minimum 20 m buffer zone. In the event of a machine requiring refuelling outside of this area, fuel will be transported in a mobile double skinned tank. An adequate supply of spill kits and hydrocarbon adsorbent packs will be stored in this area.

Secure storage of all containers that contain potential polluting substances in a dedicated internally bunded chemical storage cabinet unit or inside a concrete bunded area.

Oil and fuel storage tanks shall be stored in designated areas, and these areas shall be stored within temporary bunded areas, doubled skinned tanks or bunded containers to a volume of 110% of the capacity of the largest tank/container. Drainage from the bunded area(s) shall be diverted for collection and safe disposal.

Clear labelling of containers so that appropriate remedial measures can be taken in the event of a spillage. All drums to be quality approved and manufactured to a recognised standard. If drums are to be moved around the Site, they will be secured and on spill pallets; and drums will be loaded and unloaded by competent and trained personnel using appropriate equipment.

7.5 Water Resources (and Energy Use)

7.5.1 Risk Identification

Contractors shall undertake a qualitative water resources and energy use assessment or appraisal prior to the commencement of construction activities. An example risk assessment is shown in Table 7.9.

Table 7-9 - Example of Water Resources and Energy Use Risk Assessment

	Risk Assessment	Example Procedure
01	•	Mark up on a site plan with the location of all items and activities with high water and/or energy demands.

	Risk Assessment	Example Procedure
		This will help the planning of the overall layout of the construction site and enable the identification of efficiency opportunities.
02	Implement mitigation to eliminate or reduce water and/or energy demand.	Use the following hierarchy promote water and energy efficiency: Remove the requirement (different construction methods, substitution of materials for that require less water and/or energy). Control the use (modify construction methods, monitoring, target setting, procedures, switch off, training).

7.5.2 Water (and Energy Use) Management Plan

In order address the potential risk of any potential water quality impacts to the onsite Reservoir, and connected surface waterbodies (Lower River Shannon SAC, the River Shannon & River Fergus Estuaries SPA, Fergus Estuary And Inner Shannon, North Shore pNHA, and Westfield Wetlands), the Contractor(s) will develop, implement and maintain a Water Management Plan, which will include but not be restricted to the mitigation measures below (Table 7.10).

The Water Management Plan will include but not be restricted to the specific mitigation measures as detailed in the following sections of the CEMP: 2.6.7. Flood Risk; 7.1.2 Waste management; 7.4.2. Pollution Prevention Management Plan; 7.5.2. Water Resources (and Energy Use) Management Plan; 7.11.2 Contaminated Land Control Management Plan; and 7.12.2 Soil Erosion and Sedimentation Management Plan, as well as any relevant planning conditions, and any relevant future additional requirements via. changes in legislation or best practice guidance.

The Contractor(s) will provide a copy of the Water Management Plan to LCCC for review and comment in advance of commencement of any demolition or construction works onsite.

Table 7.10 –Water Resources and Energy Use Mitigation Measures

Activity	Mitigation Measures
General	Reduce water consumption through recovery strategies.
	Conserve water by maximising opportunities for infiltration runoff.
	Conserve water by matching water quality with its intended use and using water saving devices.
	Contractors will carry out regular inspections/audits of water resource and energy use.
	In the event of excessive water use/leaking pipes etc, immediate action will be taken to repair equipment or reassess water needs.
	Water arising from vehicle and equipment wash-down will be treated to remove silt and reused where possible. For example, wetting down roads and stockpiles.
	Turn out the lights at night and only light areas as required for safety and comfort (employment of lighting sensors).
	Ensure that the light source is the minimum intensity for the required purpose.
	Ensure that fittings are chosen that direct light accurately to where it is needed.
	Vehicles will not be allowed to idle for long periods.
	Machinery and generators shall be regularly maintained and operated in an efficient manner.
	The use of solar powered instruments/machines will be considered.
	Temporary site offices will be well insulated to retain heat or cool, utilise energy efficient bulbs and energy efficient cooling systems.
	Choose locally sourced building materials and products thereby reducing the environmental impacts from transportation.

Activity

Mitigation Measures

Choose rapidly renewable materials over finite raw and long cycle renewable materials.

Use timber and wood including that used in construction, from a certified sustainable source, or be postconsumer re-used timber, or similar.

Protection of Water - Water Quality (Source: EIAR, 2025)

During demolition, excavation and construction works, the following mitigation measures will need to be in place to prevent runoff of soil, sediment, pollutants and hazardous materials, as well as contamination of groundwater, to identified key water receptors.

The contractor will be responsible for ensuring these measures are fully implemented. Mitigation measures stated in Sections 2.6, 7.1, 7.4, 7.6, 7.11, and 7.12 of this CEMP, and Chapter 10- Land Soils and Geology of the EIAR are also applicable to the protection of surface water and groundwater during the demolition & construction phase.

The CEMP (AtkinsRealis, 2025) submitted as part of this planning application will be fully complied with by the Contractor(s) for the full duration of the demolition & construction phase and will be added to as required by the Contractor(s) (to take account of relevant planning conditions, any specific stakeholder requirements etc). In advance of commencement of works, a detailed construction management plan will be set out by the Contractor(s) within their Construction and Environmental Management Plan (CEMP). This will include management of extracted material and monitoring of rainfall conditions when planning construction activities to minimise runoff.

A Stockpile Management Plan will be developed by the Contractor(s), and provided to the Client and Employers Representative, in advance of commencement of construction. Stockpiled materials will not be located immediately adjacent to the onsite Reservoir, onsite drains, or any temporarily exposed groundwater (in the event that groundwater is encountered). Aggregate materials such as sands and gravels will be stored in clearly marked receptacles within a secure compound area to prevent contamination. Movement of material will be minimised to reduce the degradation of soil structure and generation of dust.

The onsite reservoir is a key sensitive receptor, given that it is a open body of water (within excavated bedrock), with a proven discharge pipe which outfalls directly to the Limerick Dock waterbody, Lower River Shannon SAC, and River Shannon & River Fergus Estuaries SPA. There is also a potential direct connection from the onsite reservoir to the Westfields Wetlands (via. reported historic abstraction from Wetlands Spring). Furthermore, based on the results of the tracer testing, there is potential for a second connection pipe between the onsite reservoir and the Limerick Dock waterbody, Lower River Shannon SAC, and River Shannon & River Fergus Estuaries SPA.

In order address the potential risk of any potential water quality impacts to the onsite Reservoir, and connected surface waterbodies (Lower River Shannon SAC, the River Shannon & River Fergus Estuaries SPA, Fergus Estuary And Inner Shannon, North Shore pNHA, and Westfield Wetlands), the following mitigation measures will be implemented during the demolition and/ or construction works:

- Temporary silt fencing will be erected around the onsite Reservoir prior to the commencement of any onsite works.
- A buffer zone of 20m will be implemented around the onsite Reservoir, where no onsite storage or use of fuels / chemicals or stockpiled materials (including soils, C&D waste) will be permitted. This will be strictly monitored and enforced by the Contractor and Employers Representative.

- To facilitate the removal of the concrete piers from the reservoir, surface drainage will be temporarily redirected from the reservoir to allow it to be drained. During the draining of the reservoir, the existing water will be temporarily pumped and will discharge via. the existing discharge outfall (as per the existing baseline scenario). All surface water outlets from Salesians, Stonetown Terrace and the Quarry will be connected directly to the discharge pipe from the reservoir to the River Shannon.
- When the reservoir is empty, a comprehensive survey will be conducted of any exposed pipework / infrastructure which may indicate the presence of the reported historic connection to the Westfield Wetlands Spring, or any additional discharge points to the River Shannon. If viable historic pipeline connections to the Westfield Wetlands / River Shannon are uncovered, these will be further evaluated to understand the extent of the historic pipework, and if deemed suitable following assessment, such pipework will be decommissioned and sealed.
- During the temporary infilling of the onsite Reservoir to facilitate the construction works, clean imported material will be used which have been double washed at source. This will be confirmed by the supplier and regular visual checks will be carried out during the works to verify this.
- Temporary flood protection measures will be implemented within the extent of the flood zone at the Shipyard site – these measures are detailed within the CEMP (AtkinsRealis, 2025) submitted as part of this planning application. The Contractor(s) will adhere to all temporary flood management measures as per the CEMP, for the full duration of the demolition and construction works.
- Storage areas (for diesel, oil, paint, thinners and other chemicals stored on site) will be located at all times away from the identified flood zone at the Shipyard site.

There <u>will be no in-water works permitted at the River Shannon</u> (Limerick Dock waterbody, Lower River Shannon SAC, and River Shannon & River Fergus Estuaries SPA).

During detailed design, a shut-off valve at the nearest manhole to the existing discharge outfall (from the reservoir to the River Shannon) will be incorporated into the drainage regime for the proposed development. This manual shut-off valve will be easily accessible if required, and will allow the existing discharge outfall pipe to be shut off, preventing direct discharge from the reservoir to the River Shannon in the (highly unlikely) event of an onsite emergency / fire, and risk of contaminated fuel / firewater entering the reservoir. These proposed drainage works will be completed as soon as feasible within the construction programme.

Excavations will remain open for as little time as possible before the placement of fill. This will help to minimise the potential for water ingress into excavations and mobilisation of contaminants. Excavated materials will be visually assessed for signs of possible contamination such as staining or strong odours and sampling. Should it be determined that any of the soil excavated is contaminated, this will be segregated and appropriately disposed of by a suitably permitted/licensed waste disposal contractor.

With the exception of the existing discharge pipe to the River Shannon SAC (via. the onsite Reservoir), there will be <u>no discharge of water permitted directly to the River Shannon SAC</u>, under any circumstances, during the demolition and/ or construction works.

As part of the asbestos management strategy, mitigation specific measures as proposed by Phoenix Environmental Safety Ltd in their 2025 Asbestos Survey Report will be implemented. Asbestos containing materials should be removed prior to the commencement of any works. A licensed asbestos removal contractor should be contracted for removal and disposal of asbestos waste and all asbestos removal works shall be undertaken in full compliance with the Safety,

Health and Welfare at Work (Exposure to Asbestos) Regulations 2006–2010 (S.I. No. 386 of 2006). The appointed contractor will adhere to all regulatory requirements and follow the recommendations outlined in the survey report, including the implementation of robust control measures to prevent exposure to asbestos material.

Demolition material that is deemed hazardous will be treated at an authorised facility either in Ireland or abroad.

All waste and material management and disposal / reused will be carried out in strict accordance with the C&DRWMP (Arup, 2025), submitted as part of this application.

Contaminated soil at the following locations requires excavation, and will not be reused onsite. Based on the results of environmental testing, this material is unsuitable for the proposed site end use:

- Stonetown Terrace Building all onsite C&D material; and made ground / subsoils to a depth of 1.5m BGL (existing ground level) or to the maximum excavation / piling depth of foundations (if greater).
- O'Callaghan Strand Building all made ground / subsoils to a depth of 1.0m BGL (existing ground level) or to the maximum depth of excavation for foundations (if greater).
- Flax Mill site (PBSA / Quarry Building) all made ground / subsoils to a depth of 3.0m BGL (existing ground level) or to the maximum depth of excavation for foundations (if greater).
- Main Shipyard site all made ground / subsoils excavated to facilitate the installation of proposed utilities (including drainage), tanks and any proposed underground structures in this area.

This material will be classified, managed, transported and disposed of offsite in accordance with the requirements of the Waste Management Act 1996, as amended, the Waste Framework Directive 2008/98/EC of the European Parliament and Council on waste and any relevant subsequent waste management legislation.

The above identified contaminated soil will be excavated and removed for offsite disposal during the enabling works phase, and <u>in advance of the excavation of foundations</u>. This is to mitigate the potential risk of groundwater impacts via. existing onsite contamination.

Temporary onsite groundwater and gas monitoring wells shall be either suitably protected for the duration of the works and / or appropriately decommissioned in accordance with best practice guidance (SEPA guidance document "Good Practice for Decommissioning Redundant Boreholes and Wells"

For the prevention of contamination of receptors by mobilised soil and sediment, the following measures will be taken:

- The creation of steep slopes will be avoided to prevent runoff from precipitation.
- Heavy discharges of water onto the soil will be avoided.
- Prevention of over-watering of loose areas for dust suppression.
- Site traffic will be restricted to designated routes.
- Regular leak monitoring and maintenance of dewatering pipes will be undertaken
- The recommended maximum vehicle weightings will be maintained to avoid destabilization and subsequent erosion of soil surface

- Disturbed land or stockpiles will be progressively rehabilitated by establishing temporary or permanent vegetation supported by irrigation.
- Excess work areas will be covered with geotextile type liners.
- Collection systems will be provided under machinery or equipment during wash down to prevent erosion from runoff.
- Flow attenuation mechanisms to control run off of precipitation such as temporary structures to slow running water to facilitate pollutant removal and infiltration and reduce runoff will be installed.
- Sediment traps will be placed on all drainage lines such as geotextile lining.
- Collection channels capable of collecting all runoff water during storms if it contains fine clay particles will be constructed.
- A contained control facility will be used for concrete washout.
- Runoff water from reservoir will be treated and discharged at a controlled flow rate through storm water discharge network (subject to agreement with LCCC).
- Collection channels and reservoir will be inspected and cleaned on a regular basis to prevent sediment build up.
- The site will be stabilised as soon as possible after construction.

For the prevention of contamination of receptors by fuel or chemicals used on site, the following measures will be taken:

- Regular inspections/audits of hazardous materials usage, handling and storage areas and regular/thorough maintenance of vehicles and hydraulic systems and inspections of sanitary facilities and disposal will be carried out by contractors.
- All contractors handling hazardous materials will keep appropriate spill clean-up material adjacent to storage and maintenance areas.
- The amount of diesel, oil, paint, thinners and other chemicals stored on site that pose potential spillage environmental hazards will be minimised. materials that minimise environmental impact such as lead-free paints, asbestos free materials etc. will be used.
- Collection systems will be provided/bunded if necessary, under machinery or equipment that may leak hydrocarbons/hazardous substances.
- The contractor shall be responsible for training all staff in the procedures for handling spills and shall provide all staff with appropriate personal protective equipment.
- The contractor shall provide all staff with appropriate personal protective equipment.
- Impacting adjacent sites will be avoided by ensuring all contractors activities, equipment and waste storage is confined to the allocated site boundary.
- Refuelling of construction vehicles and the addition of hydraulic oils or lubricants to vehicles will take place in a designated area or within the construction compound which will be away from the onsite Reservoir, surface water gulleys or drains with a minimum 20 m buffer zone. In the event of a machine requiring refuelling outside of this area, fuel will be transported in a mobile double skinned tank. An adequate supply of spill kits and hydrocarbon adsorbent packs will be stored in this area.
- Secure storage of all containers that contain potential polluting substances in a dedicated internally bunded chemical storage cabinet unit or inside a concrete bunded area.
- Oil and fuel storage tanks shall be stored in designated areas, and these areas shall be stored within temporary bunded areas, doubled skinned tanks or bunded containers to a

- volume of 110% of the capacity of the largest tank/container. Drainage from the bunded area(s) shall be diverted for collection and safe disposal.
- Clear labelling of containers so that appropriate remedial measures can be taken in the event of a spillage. All drums to be quality approved and manufactured to a recognised standard. If drums are to be moved around the Site, they will be secured and on spill pallets; and drums will be loaded and unloaded by competent and trained personnel using appropriate equipment.

In the event of a spill, the following procedure will be followed:

- Identify and stop the source of the spill and alert people working in the vicinity;
- Notify the Environmental Manager immediately giving information on the location, type and extent of the spill so that they can take appropriate action;
- If applicable, eliminate any sources of ignition in the immediate vicinity of the incident;
- Contain the spill using spill control materials, track mats or other materials as required. Do not spread or flush away the spill;
- If possible, cover or bund off any vulnerable areas where appropriate such as the onsite Reservoir, drains, watercourses and/or sensitive habitats;
- If possible, clean up as much as possible using the spill control materials;
- Contain any used spill control material and dispose of used materials appropriately using a fully licensed waste contractor with appropriate permits so that further contamination is limited;
- The Environmental Manager shall inspect the site as soon as practicable and ensure the necessary measures are in place to contain and clean up the spill and prevent further spillage from occurring; and
- The Environmental Manager will notify the appropriate stakeholders such as Limerick City
 & County Council, National Parks and Wildlife Service and/or the EPA.

Flooding

From a flooding perspective, the proposed construction compound at the Shipyard site, lies within the 0.5% AEP area for tidal flooding. Based on the extent of predicted tidal flooding, the other construction compound at the Flaxmill site is located outside of the predicted flood zone. All fuels, chemicals, oils, paints and any other hazardous materials will be stored within the construction compound at the Flaxmill site, which is located outside of the predicted flood zone.

To mitigate flood risk (or unacceptable residual flood risk) during the construction period, the contractor will employ the following mitigation measures as part of the site preparation for the construction phase (ARUP, 2025):

- Demolition & Construction Stage Flood Protection Measures:
- Elevating the site compound / site storage areas at the Shipyard site via fill placement to an appropriate level (i.e. 5.7m AOD based on the outcome of the FRA (ARUP, 2025).
- Constructing and/or implementing temporary flood defences at the Shipyard site (i.e. civil works and/or proprietary flood defence products, or a combination of both) to an appropriate level (i.e. 5.7m AOD based on the outcome of the FRA (ARUP, 2025).

- In the event of a tidal flood warning, materials stored in the Shipyard site compound shall be removed immediately to avoid the risk of flooding to neighbouring properties.
- Preparation of a Flood Emergency Response Plan for Construction Phase (FERP-CP) A FERP-CP will be developed by the Contractor(s) for the project, which will contain a detailed response plan to a tidal flood event on the Shannon occurring while construction was active on the site, which will include the following mitigation measures (noting this not necessarily to be an exhaustive list of measures) (ARUP, 2025):
- Development of a FERP-CP in the first instance;
- Definition of designated roles within the construction team / firm, and associated responsibilities with regard to the implementation of the FERP-CP;
- Having an appropriate nominated person (e.g. site manager) who will be responsible for monitoring weather warnings, flood warnings, and storm-tide warnings (i.e. the 'Construction Phase Flood Manager') – this will only ever come into play on a periodic basi.
- Communication protocols to the site team to alert them to the possibility of a flood and the need to move any machinery, plant, equipment, etc, to an appropriate location within the site/site compound if safe to do so, and to evacuate the site;
- General protocols around where and how machinery, plant, other equipment and materials are stored / stockpiled / located within the site compound(s), noting that all fuels, chemicals, oils, paints and any other hazardous materials will be stored within the construction compound at the Flaxmill site, which is located outside of the predicted flood zone.
- Signage and other information on site drawing awareness to FERP-CP protocols (e.g. materials / plant / equipment storage, evacuation routes, etc).
- The level of the compound and the materials storage areas are to be determined by the contractor and to be confirmed in the Flood Emergency Response Plan for Construction Phase (FERP-CP), taking into account the above mitigation measures, as well as the findings of the FRA (ARUP, 2025).
- The Contractor(s) will provide a copy of the FERP-CP (which will take into account any relevant planning conditions, and any relevant future additional requirements via. changes in legislation or best practice guidance) to LCCC for review and comment in advance of commencement of any demolition or construction works onsite.

A comprehensive surface water and groundwater monitoring programme will be implemented before, during and after the proposed demolition and construction works. This is particularly important during the replacement works of the outfall pipe. Regular sampling⁴ at key groundwater monitoring wells onsite, as well as at the onsite reservoir, and at key locations on the River Shannon upstream and downstream of the site. Water monitoring will be scoped, carried out and assessed by an appropriately qualified Environmental Manger or Ecological Clerk of Works. Results will be held onsite and available as required.

Excavations, especially piling for foundations will need to be carefully monitored for groundwater ingress.

Any drainage discovered during excavation will require inspection as to integrity of the pipework and connection from source to receptors with water quality analysis as required.

Annual water quality analysis is recommended during the operational phase to confirm that the water quality of the reservoir and surface drainage network is maintained and that the SuDS measures and petrol interceptors are effective. It is recommended that additional water quality monitoring is performed in the event of a flooding event on site or in the case of fire or any other accidental spillage.

7.6 Ecology – Natural Habitats, Flora and Fauna

This section identifies potential adverse impacts which may arise from construction and provides guidance on management and control.

7.6.1 Risk Identification

Contractors shall undertake a qualitative ecology risk assessment or appraisal prior to the commencement of construction activities. An example risk assessment is shown in Table 7.11.

Table 7.11 – Example of Ecology Risk Assessment

	Risk Assessment	Example Procedure
01	Identify the location of all sensitive ecological receptors within or adjacent to the construction site.	Mark on the site plan the location of all water courses, surface water features, ecologically sensitive areas and habitats. This will help the planning of the overall layout of the construction site and enable the identification of suitable sites for high risk activities such as chemical/fuel storage areas, refuelling points, haul routes and wash out areas.
02	Identify sensitive receptors off site or downstream of the construction project that could potentially be affected by the works. For example	Undertake baseline assessment of water quality prior to construction. Establish monitoring regime during and post construction.

⁴ Minimum monthly frequency

	Risk Assessment	Example Procedure
	water courses, ecologically sensitive areas and habitats.	
03	Identify the construction activities and sources of pollution that may affect the water/ecological receptors identified.	These could include excavations, dewatering, water course crossings, as well as general sources of pollution such as surface water runoff, fuel storage and concrete use.
04	Evaluate the risk of the construction activities polluting the identified receptors.	Assess the likelihood of an activity causing pollution, damage or harm.
05	Implement mitigation to eliminate or reduce risks.	 Use the following hierarchy to manage the risk: Remove the risk (different construction methods/activities). Control the source (modify construction methods, provide adequate bunding for fuel and other storage areas, install measures such as silt fences or ditches to control runoff). Protect the receptor (provide hard standing for compounds/storage areas, filter, control, contain discharges, ensure appropriate environmental permits are in place). Put emergency procedures in place.

7.6.2 Ecology Management Plan

Contractors will develop, implement and maintain an Ecology Management Plan.

Table 7.12 - Ecology Mitigation Measures

Activity Mitigation Measures Biodiversity EIAR Chapter Mitigation Measures The proposed development includes features that minimize the potential for negative effects on the identified aquatic KERs. The reservoir is included as a central feature in the design of the development and will be established and appeared accordingly. Given the poor state of evicting water.

- The reservoir is included as a central feature in the design of the development and will be retained and enhanced accordingly. Given the poor state of existing water quality within the reservoir and proliferation of invasive, non-native species that currently surround the reservoir, the measures set out in the landscaping plan will ensure that the ecological status of the feature is improved.
- The proposed development is designed to connect directly with the Limerick public
 wastewater treatment infrastructure, which has adequate capacity to accommodate
 and treat any arisings from the proposed development. This is fully assessed in
 Chapter 8 of the EIAR.

Potential for effects on water quality associated with the production of foul sewage and surface water runoff from the site has been fully mitigated through appropriate design as fully described in Chapter 11 Water and Hydrogeology, the assessment concludes that with the implementation of mitigation, 'no significant effects on downstream surface water quality will occur' during the operational phase.

The landscaping plan provides for the provision of greenspace throughout the MS and increases vegetative cover and connectivity throughout the site as part of the overall design. 2841m² of perennial planting, 87m² of wetland planting, 1611m² of swale and 4527m² of grassland are proposed across the site, and will mitigate for the removal of the existing low-diversity scrub, grassland and recolonising bare ground. The epimural vegetation along the

quarry walls will be allowed to revegetate following any removal of existing invasive species and ivy (If any) that may be required. All proposed tree species to be replanted are pollinator friendly varieties. The landscape plan also contains measures to enhance the reservoir both in terms of vegetation and water quality and has a strong focus on native and pollinator friendly species. No invasive species are proposed as part of the plan and a management plan has been included to treat the invasive species identified on site.

The design of the development and the associated landscaping plan provide for an overall increase in vegetation and greenspace throughout the site. This will enhance the amount of cover and habitat connectivity throughout the site.

Bat Roosting Habitat

Crevice Dwelling Bat Species

The landscape design includes for the retention of the roost identified within the quarry walls. The reservoir arches will also be retained and not illuminated. While no evidence of roosting was found in the latter, the existing tunnels provide suitable resting habitat for bats and birds. All compensatory habitats proposed are shown in Figure 7.5-1, which includes measures included in Phase I of the *Masterplan, for context*.

Lesser Horseshoe Bats

LHB were recorded utilising the site for roosting and as such it was an important part of the design to ensure roosting availability remained within Cleeves Riverside Quarter for this species. Three bat houses were included in the design to provide choice availability in various weather, season, and life-cycle conditions (Plate 7.51). The locations of the bat houses were selected to provide safe and undisturbed roosting habitat along identified and recreated commuting corridors and will be positioned away from potential tampering and light disturbance. The bat house design was inspired by Vincent Wildlife Trust's designs, however a pitched roof was included instead of a sloped roof. The bat houses will be installed as soon as possible after site clearance takes place, and will replace the smaller Cathedine roosts (Plate 7.62) put in place prior to demolitions.

- One bat house is proposed to be located against the western quarry wall, under the
 proposed boardwalk above the reservoir from the Salesians into the Quarry. This
 location, in proximity to water and partially shaded by the boardwalk, will provide
 cooler climatic conditions. The entrance into the house, suitable for LHB (30x20cm),
 will be located on the floor of the suspended house to limit potential bird access.
- One bat house is proposed along the same quarry wall, at the corner with the northern boundary. This house will be also suspended on the quarry to limit potential tampering. The house will not obstruct the existing soprano pipistrelle roost.
- One bat house is proposed along the northern boundary of the Salesians, where a
 roost was previously identified. This house will be on stilts to prevent tampering.

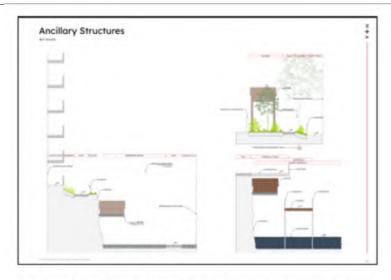


Plate 7.6-1 Extract from LCLE001 Landscape Plan showing proposed bat houses

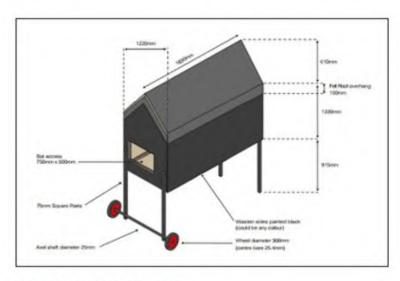


Plate 7.6-2 Cathedine Roost Example

Bat Foraging and Commuting Habitat

The design of the proposed development was informed by the findings of bat surveys undertaken at the site, which found the quarry area to be the focus of commuting and foraging bat activity, with the reservoir providing suitable prey availability. This is where the majority of bat activity recorded was concentrated. LHBs were found to be moving across the site along its northern boundary, using the quarry walls and neighbouring private gardens to navigate.

In collaboration with the project ecologists, the landscape and lighting plans underwent a series of iterations to ensure these habitats remained available and were improved and enhanced as much as possible.

The proposed landscape plan includes for the provision of native planting and aquatic habitats throughout the Application and Masterplan Sites, which will help provide foraging opportunity for local wildlife:

 As the focus of the proposed development's landscape, the reservoir will see biodiverse planting mix replacing the existing the existing low diversity scrub and recolonising bare ground which will maintain connectivity along the identified commuting corridors.

- Phytoremediation islands will also be introduced to help purify surface water and will be planted with native flowering mixes to attract invertebrates and boost biodiversity.
 The planting mixes around the reservoir will promote prey availability for bats.
- A tree canopy will be re-established along the proposed steps into the quarry, which
 will replace the existing semi-mature gardens of the Victorian terrace. It was not
 possible to retain the existing trees as their roots extend below derelict buildings to
 be demolished.
- The quarry walls will be revegetated with climbing mixes where removal of existing vegetation during construction was necessary, to maintain prey availability and commuting features in this area.
- In front of the Flaxmill, trees will be introduced within movable wooden planters to increase greenery in this zone while allowing for future phases of the masterplan to be implemented.
- Communal gardens and amenity spaces will be created in the Salesians and Stonetown terrace.
- Tree canopy will be added to existing treelines adjacent to the Shipyard to strengthen potential commuting and foraging route, and increase prey availability in this area.

The proposed lighting plan was specifically limited to the provision of lighting that was justified and navigated Limerick City and County Council Public Lighting and Product Specification 2022 Guidance, amongst others:

- The LCCC guidance on outdoor lighting colour temperature request the use of 4000K luminaires in public areas. Following studies carried out on ecological impact on the site, and the identification of foraging bats in the area, the IDT have agreed to the reduced temperature of 2700K luminaires to accommodate the local wildlife requirements. This colour temperature allows for better visual comfort for wildlife.
- The use low-level bollards has also been incorporated into many areas to suit the
 design team vision for the site. There is a mixture of symmetrical and asymmetrical
 bollard being used in the proposed scheme. This is to limit artificial illumination along
 the vertical space utilised by bats.
- Bollards have been used in the trafficked area to the rear of the Quarry building to suit the IDT requirements.
- Handrail lights are used in areas with steps. This lighting type will maximise the lighting on the steps for safety and minimise up light spill and impact on the ecology. Lighting in handrails will be fit with dimming control to achieve appropriate lux levels.
- Surface mounted downlight luminaires are proposed in some areas, primarily the canopy areas on the main site, and in the shipyard. These luminaires were selected to reduce upwards light spill on the site while providing sufficient light fittings for pedestrians within the scheme constraints
- All luminaires will have an LED light source.
- No lighting is directed at the reservoir area or along linear features created or retained.
 Low intensity handrail lights will be utilised at the reservoir for public safety.
- Lighting control regimes were implemented across the site:
- Walkways and amenity areas will be programmed with dusk to midnight switching, and roadways with dusk to dawn switching, as per LCCC specification.
- The Quarry Roadway being the primary route for the foraging wildlife will incorporate presence detection, the lighting will be off unless there is movement detected that will activate the lights in this area via movement sensors. The purpose of this is to always ensure minimum light in the area to allow maintenance of the foraging route.

Potential significant effects on water quality are predicted as a result of the construction and demolition activities associated with the proposed development. A suite of mitigation and best practice measures are in place to block potential pathways for any significant impacts on water quality. To avoid repetition, these measures are not listed in full here but are included in Chapter 11.0 of this EIAR and associated appendices.

To protect aquatic fauna from direct impacts during construction, particularly during works around and within the Reservoir habitat, the following mitigation measures will apply:

 Prior to proposed works within the reservoir, fish will be caught using electrofishing and all fish collected will be released into the River Shannon.

Vegetation clearance along the quarry walls will be limited to necessary removal of clematis, ivy and buddleia species which overwhelm other existing vegetation and provide potential issues to the wall structure. Whilst much of the existing vegetation on the Application site will be lost, the landscape plan for the development includes specific measures to enhance the areas where the existing vegetation is located with diverse native species mixes. This includes the quarry wall and the area surrounding the reservoir, where the majority of existing vegetation on the site is found.

Loss of Bat Roosting Habitat and Mortality

A derogation licence (DER-BAT-2025-169) is in place for Phase I works relating to the remediation works on the Flaxmill building, where LHB roosts were identified. The following mitigations apply to this phase and are relevant to the continued monitoring of the bat activity within the site prior to and during the construction of the Application Site (Phase II):

- A pre-commencement survey will be carried out to assess the buildings where
 roosting was identified prior to any works. The function of this survey will be to assess
 any changes in baseline environment since the time of last undertaking surveys in
 2024, and to prevent direct harm on bats.
- Prior to commencement, a toolbox talk will be carried out by the project ecologist to inform working crews of the potential effects of the works on resident bats, and known roosting locations will be clearly pointed out. Roosting locations will be avoided where possible.
- While it is recommended to avoid works during the bat activity season (April –
 September), it is understood that this cannot be avoided due to the structural integrity
 of the building being at risk. The work programme currently is anticipated to
 commence in Q2 2025 and run for a period of 12 months.
- Based on the work programme, regular site visits will be undertaken by a licenced bat
 ecologist at different stages of the works to assess progress and use of known roosts
 by bats, as well as checking access to known locations is maintained. Inspections will
 make use of scaffolding equipment where possible to expand bat searches to
 previously unreachable areas.
- Bat access to the first floor will be maintained throughout the works by ensuring access points are kept free from obstruction. The roost locations on the first floor will not be used to store materials and will be kept free from human traffic.
- Interior lighting will be restricted to the areas where works are being undertaken and any exterior lighting will be turned off when not in use.

In addition to these, it has been proposed to also limit lighting during works in adjacent buildings so as to provide alternative dark environments in buildings adjacent to the Flaxmill during Phase I.

A derogation licence application has been submitted to NPWS and will need to be in place for the project. The derogation licence is issued by NPWS on a yearly basis, and therefore it is expected that multiple licences will be necessary. Each licence will be informed by monitoring undertaken at the site and will be specific to the works to be undertaken during the calendar year. NPWS will be informed of any progress made during construction with regular updates.

The following mitigations in relation to the construction works for Phase II will apply:

- Prior to commencement, confirmatory inspections and bat activity surveys will be carried out to ensure no bats are present within the buildings. These will be catered to each specific building. If these cannot rule out the presence of bats, precautions will be taken during the demolitions (manual removal of materials such as slates, delayed use of machinery to allow escape) and these will be undertaken under the supervision of an ecologist.
- Demolition works will not be carried out during the bat activity season (April-September) within buildings where active day roosts are found. Where precommencement confirmatory surveys identify any alternative roosts, demolition works will not be carried out in respect of these alternative roosts during bat activity season.
- A toolbox talk will be carried out prior to works commencing by the project ecologist
 to inform working crews of the potential effects of the works on resident bats, and
 known roosting locations will be clearly pointed out.
- Prior to demolitions being carried out, alternative roosting resources will be set up to retain roosting availability on site. These will be in the form of three cathedine bat houses, suitable for LHB. Their proposed locations are shown in Figure 7.51. Whilst two of the Cathedine night roosts will be located in areas relatively buffered from continuous construction activities, in the Victorian terrace garden and along an existing terrace looking over the reservoir, the third roost will be in the north-western corner of the Quarry Site. A 5m buffer will be created around it to avoid stockpiling and machinery in its immediate vicinity. This is primarily to avoid damage to the roost.
- Other available roosting spaces will be retained along the quarry wall, under the
 reservoir tunnels and in buildings not proposed for demolition. The permanent bat
 houses included in the design will also be set up prior to demolition or as soon as
 possible following site clearance.
- The use of the site by LHB will be monitored during construction using passive static
 detectors left on site and tuned to the specific frequency calls of the species, to reduce
 battery and storage usage. A minimum of three detectors at the proposed bat house
 locations, or nearby, are proposed.

The provision of alternative roosting habitat following construction has been incorporated into the design of the project and will include the use of bat boxes. Permanent roosting habitat available within the site is listed in the following sections.

Salesians Site bat pole roost

A bat pole will be erected along the northern boundary of the Salesians, in the proposed public gardens, to be of use to pipistrelle species currently utilising the convent's yard. This will be in addition to alternative roosting habitat for LHB placed in this area prior to demolitions.

Flaxmill staircase roost

As part of Phase 1 works on the Flaxmill, following remediation of the building, an unused attic space above the buildings' exterior staircase will be retained and isolated from the building. Access via bat slates will be provided into the space.

Flaxmill bat slates

The provision of bat slates on the Flaxmill has also been included in the design to allow space for crevice dwellers to roost on the roof. These will not provide access to the interior.

Bat houses

Three bat houses have been included in the design. The location of the bat houses within the site was considered in connection with the retention of the dark corridor along the quarry walls and to provide access to the Reservoir, while providing options to bats depending on preferred roosting conditions. These are described in Chapter 7 of the EIAR.

Tunnels

Two bat boxes suitable for bridges will be erected under one of the tunnel arches to increase roosting suitability in this area. Access into the tunnels will be restricted to prevent disturbance and tampering.

Bat Boxes

A minimum of three woodcrete bat boxes will be installed within the site, with final locations to be determined by an ecologist following construction. Provisional locations include on or in proximity to the bat houses along the quarry walls.

Bat Disturbance

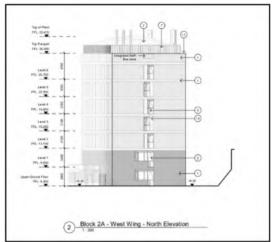
A derogation licence from the NPWS has been applied for the project. The derogation licence is issued by NPWS on a yearly basis, and therefore it is expected that multiple licences will be necessary. Each licence will be informed by monitoring undertaken at the site and will be specific to the works to be undertaken during the calendar year. NPWS will be informed of any progress made during construction with regular updates.

During the construction phase, plant machinery will be turned off when not in use and all plant and equipment for use will comply with the Construction Plant and Equipment Permissible Noise Levels Regulations (S.I. No. 632 of 2001). Where construction is required in close proximity to installed temporary or permanent LHB roosts, these will be monitored by the appointed ecological clerk of works to assess whether they are occupied. If occupied, works will be avoided if possible until the roost is vacant.

Vegetation clearance of non-native species and ivy in proximity of the soprano pipistrelle roost identified within the quarry walls will be avoided, where unjustified. If vegetation clearance is required in this area, it will be carried out outside the bat activity season (April-October) and all clearance works supervised by an appropriately qualified ecologist to ensure that:

- All vegetation removal is justified
- The removal does not damage the existing roost crevice

If lighting is required (likely only in early evening and morning during winter months), directional lighting will be used to prevent overspill on to sensitive areas, namely the reservoir and quarry areas. Exterior lighting during construction, shall be designed to minimize light spillage, thus reducing the effect on areas outside the Proposed Project, and consequently


on bats i.e. Lighting will be directed away from sensitive areas around the periphery of the site boundary to minimize disturbance to bats. Directional accessories will be used to direct light away from these features, e.g. through the use of light shields (Stone, 2013). The luminaries will be of the type that prevent upward spillage of light and minimize horizontal spillage away from the intended lands.

In addition, the applicant commits to the use of lights during construction (such that they are necessary) in line with the following guidance that is provided in the Dark Sky Ireland Lighting Recommendations:

- Every light needs to be justifiable,
- · Limit the use of light to when it is needed,
- Direct the light to where it is needed,
- · Reduce the light intensity to the minimum needed,
- · Use light spectra adapted to the environment,
- When using white light, use sources with a "warm" colour temperature (less than 3000K, ideally 2700K).

Bird Habitat

The incorporated landscape measures described in Chapter 7 of the EIAR will reinstate suitable resting and breeding spaces for the common garden birds recorded at the site. Swift boxes will also be provided. Cement or woodcrete materials will be utilised to ensure durability of these nesting habitats. Locations for the swift boxes have been included into the northern elevations of Block 2B – Central Wing and Block 2A – West Wing, within the Quarry Site (Plate 7.4-1). As no eaves are proposed on these buildings, these will be installed to the exterior along the walls. A minimum of two triple entry boxes per building are proposed (Plate 7.53).

Plate - Example of swift box location from ARCH Drawing CRQMP-BMEA-2X-ZZ-DR-AA-2862

Plate - Example of durable swift box.

Bird Mortality

Site clearance to facilitate the construction phase of the proposed development will be undertaken outside of the nesting bird season (1st March – 31st August) to ensure compliance with the Wildlife Act. If vegetation clearance is required during the nesting bird season, this will be preceded by a confirmatory nesting bird survey to ensure no nesting birds are present and all clearance works supervised by an appropriately qualified ecologist.

Numerous feral pigeon nests are located throughout the buildings on the Application site. Access to nesting areas will be prevented prior to demolition to ensure that no birds with young that have not fledged are present at the time of demolition.

Otter Disturbance

In relation to disturbance, Otter are predominantly crepuscular in nature, and it is anticipated that construction activity will mostly be confined to daytime hours, thus minimising potential disturbance related impacts to the species.

Best practice noise mitigations are presented in Chapter 13 Noise and Vibration, of the EIAR. The following measures will also be implemented to limit disturbance to otter:

- All plant and equipment for use will comply with S.I. No. 632/2001 European Communities (Noise Emission by Equipment For Use Outdoors) Regulations, 2001
- Operating machinery will be restricted to the proposed works site area.
- The use of artificial lighting will be avoided during construction works. Any
 unavoidable artificial lighting used to facilitate works will be blocked from spilling onto
 the River Shannon, using directional accessories or physical barriers.
- All vehicles and mechanical plant will be fitted with effective exhaust silencers and maintained in good working order for the duration of the contract.
- Compressors will be of the "sound reduced" models fitted with properly lined and sealed acoustic covers which will be kept closed whenever the machines are in use and all ancillary pneumatic tools shall be fitted with suitable silencers.
- Machines which are used intermittently will be shut down or throttled back to a minimum during those periods when they are not in use.
- Any plant such as generators or pumps which are required to work outside of normal working hours will be surrounded by an acoustic enclosure.

Biosecurity

An invasive species management plan has been prepared to remove the Japanese knotweed recorded within in proximity of the reservoir prior to construction.

All of the identified Japanese knotweed within the proposed development site will continue to be treated and any remaining contaminated soil will be removed from site to a licenced waste facility prior to construction works commencing. In the same way, any contaminated soil in proximity of the Shipyard found to be contaminated with Himalayan knotweed will be removed prior to any earthworks in this area.

The proposed methodologies for treatment and eradication of the First Schedule invasive plant species are presented in Appendix 7.3, as well as all site hygiene and biosecurity measures.

Biodiversity EIAR Monitoring Measures

An Ecological Clerk of Works (ECoW) will be appointed by the Contractor to ensure that the ecological plan is effectively implemented. The representative will be a suitably qualified ecologist or environmental scientist. All operatives working on the site will be made fully aware of the environmental responsibilities, conditions and requirements along with a full description of the methods to be employed. This information will be imparted at a dedicated site induction prior to commencing work on the site. The induction of any new staff will include an

environmental induction. A checklist will be filled in on a weekly basis to show how the measures above have been complied with. Any environmental incidents or non-compliance issues will immediately be reported to the project team and that the project team will take corrective action if necessary. The construction management team will be regularly monitoring the works and will be fully briefed and aware of the environmental constraints and protection measures to be employed. The contractor's environmental representative will work closely with the Employers Environmental Representative as described below.

The ECoW will be responsible for:

- Monitoring the construction works and identifying any additional or refined mitigation measures (i.e. 'adaptive management measures required), in relation to any ecology;
- Reporting the findings of monitoring, including any adaptive management measures recommended and the effectiveness of same;
- Delivering site induction and training on ecological aspects to all construction personnel prior to commencement of construction activities;
- The implementation of ecological mitigation measures
- Updating, renewing and returning the derogation licence in place throughout construction

Employers Environmental Representative

In addition to the above, the employer (Limerick Twenty Thirty), will also provide an employer's environmental representative. This officer will be a suitably qualified ecologist or environmental scientist and will work closely with the contractor's representative to ensure that all environmental/ecological requirements are adhered to and fully monitored. The employer's representative will visit the site on a weekly basis (at a minimum) during the construction phase. An audit of the works will be undertaken during these weekly visits, and it will be ensured that the prescribed methods are employed. Any potential impacts additional to those predicted will be highlighted and if necessary, additional measures put in place to prevent them. Any deviance from the agreed methodology will be highlighted and if necessary rectified.

7.7 Light Pollution

7.7.1 Risk Identification

Obtrusive light from a construction site is a form of pollution. Construction lights can cause glare and light trespass. These are forms of obtrusive light which may cause nuisance to others.

Table 7.13 - Example of Light Pollution Risk Assessment

	Risk Assessment	Example procedure
01	•	Mark a site plan with the location of all potential receptors including housing, schools, hospitals, roads and key wildlife populations. This will help the planning of the overall layout of the construction site and enable the identification of suitable sites for lighting.

	Risk Assessment	Example procedure
02	Identify the construction activities and sources of light pollution that may affect the receptors identified.	These could include depots, storage areas, night working activities etc.
03	Evaluate the risk of the construction activities creating light pollution for the identified receptors.	Assess the likelihood of an activity causing pollution, damage or harm.
04	Implement mitigation to eliminate or reduce risks.	 Use the following hierarchy to manage the risk: Remove the risk (different construction methods/activities). Control the source (modify construction methods; provide adequate screening, directional light). Protect the receptor (screens). Put emergency procedures in place.

Light Pollution Control Plan 7.7.2

Contractors will develop, implement and maintain a Light Pollution Control Plan. The Plan will include but not be restricted to the mitigation measures below (Table 7.14).

Activity	Mitigation Measures
General	Maintain levels of lighting acceptable for health and safety and avoid over lighting areas.
	Light fitting temperature used will be set to a maximum of 2700K to accommodate the local wildlife requirements. This colour temperature allows for better visual comfort for the wildlife.
	As per the permanent strategy, lighting columns have be kept at or below 4m and have a specified directional beam to reduce back spill to reduce unnecessary illumination on bat foraging areas. 3.5m columns will be used along the quarry wall as this is the main bat foraging area within the site.
	Low-level bollard light fittings will be preferred to temporary lighting columns, especially in the Quarry and along the northern boundary, to reduce high-level light within bat foraging areas.
	The column lighting will be cowled and angled downwards to minimise spillage to surrounding properties and other sensitive receptors.
	Lighting will be provided with a minimum luminosity sufficient for safety and security purposes. Where practicable, precautions will be taken to avoid shadows cast by the site hoarding on surrounding roads, footpaths and amenity areas.
	Motion sensor lighting and low energy consumption fittings will be installed to reduce usage and energy consumption.
	Lighting will be positioned to not cause destruction or confusion to pass motorists, river users or navigation lights for air or water traffic.
	The Contractor will need to maintain control and ensure all lights are turned off when not required.
	The security strategy will be developed to reduce potential requirement for evening lighting.

7.8 Landscape and Visual

7.8.1 Landscape & Visual Effects Control Plan

Contractors will develop, implement and maintain a Landscape & Visual Effects Control Plan. The Plan will include but not be restricted to the mitigation measures below (Table 7.15).

Table 7.15 - Landscape & Visual Effects Mitigation Measures

Activity

Mitigation Measures

Landscape & Visual EIAR Chapter Mitigation Measures & Monitoring Requirements

Incorporated Design Mitigation

In terms of how the proposed development will integrate with and impact upon the existing landscape context and visual environment, the importance of design quality in inserting new buildings into the urban fabric should not be underestimated. Good design in such circumstances is a rigorous process involving: a deep understanding of the site, its context and existing sensitivities; a broad knowledge of suitable design approaches, testing appropriate design options and the ability to convert these through careful detailing, materials selection and effective control throughout the construction process. These aspects of design are central to successful and appropriate integration of new development within its context. Any development has the potential to impact negatively, particularly if poorly designed. Conversely it has the potential to impact positively, indeed, to inspire, if well-designed.

The high quality of the proposed design is an important factor in the reduction of potential impact in respect of both landscape and visual effects. The design rationale and details employed within the design seek to mitigate negative effects on the landscape character and upon the visual amenity of the area by:

- Employing a subtle variation of tone, colour, texture and reflectiveness across the facades, particularly where the buildings may be seen from greater distance and the use of appropriate and harmonising colour, tones and materials to integrate with other buildings nearby and within the existing scheme, in order to reduce the apparent massing of the buildings;
- The setting back of the taller elements of the proposed buildings away from public roads and footpaths to assist in reducing the apparent massing adjacent to surrounding smaller scale residential buildings;
- Including public open spaces within the design which link with and relate appropriately to existing adjacent/neighbouring open spaces;
- The provision, maintenance and management of an associated and sensitively considered soft landscape design for the development, which assists in the visual integration and screening of the buildings within the existing landscape - the introduction of appropriate new planting to such effect;
- Rationalisation of all services elements and any other potential visual clutter, its incorporation internally within building envelopes (as far as practically possible) and the inclusion of integrated screening at roof level to conceal plant etc, where this is not possible. It should be noted in this regard that the specific siting of communications antennae on top of PBSA Block 2A localises and limits their visual impact and the finishes proposed for them are effective in reducing their visibility on the skyline;

Construction Phase Mitigation

The building site including a site compound with site offices, site security fencing, scaffolding and temporary works will be visible during the construction phase, from a range of viewpoints around

the site. Such elements are generally viewed as temporary and unavoidable features of construction in any setting. However, the perimeter site hoarding will screen from view much of the construction activity and materials at ground level. Other mitigation measures proposed during this delivery stage of the development revolve primarily around the implementation of appropriate site management procedures during the construction works - such as the control of lighting, storage of materials, placement of site offices and compounds, control of vehicular access, and effective dust and dirt control measures. Such mitigation is set out in the Construction and Environmental Management Plan (CEMP) prepared by AtkinsRealis as part of the documentation submitted for planning for the scheme. This outlines a range of construction phase mitigation measures, many of which are relevant to the reduction of the temporary impacts on the landscape and visual environment during the construction phase. It forms the basis for the required measures to be included in the appointed contractor's CEMP. As such, it will reference construction phase mitigation measures which have relevance to the assessment of Landscape and Visual Impact. It will be prepared by the appointed contractor and subsequently submitted to and agreed with the Local Authority prior to the commencement of any construction works. This is a working document which will be continually reviewed and amended through the construction phase to ensure effective mitigation throughout. It will deal with all issues related to the construction, delivery and management of the scheme during the construction stage and will ultimately include details on the following:

- Daily and weekly working hours;
- Agreed haul routes for incoming materials;
- Use of licensed hauliers;
- Disposal sites;
- Travel arrangements for construction personnel;
- Appropriate on-site parking arrangements for construction personnel to prevent overspill parking on the local road network;
- Temporary construction entrances to be provided;
- The nature of site lighting including aspects of timing, orientation and shielding;
- Wheel wash facilities if/as required;
- Road cleaning and sweeping measures to be put in place, if/as required;
- Temporary traffic management measures and construction signage to be put in place and maintenance of same;
- Liaison arrangements with the local community.

The definitive mitigation measures included during the construction phase are as follows:

- Site hoarding shall be erected to screen views of construction activities;
- Vegetation protection measures, particularly around the quarry walls, will be installed ensure vegetation to be retained is fully protected during the construction process;
- The CEMP which accompanies the application for approval shall continue to be developed by the contractor to include the control of construction activity, traffic, materials storage and lighting with due consideration for neighbouring residences and surrounding area.

In addition, the organisation of the construction and delivery of the proposed development into distinct zones which will have distinct construction programmes and different delivery dates, also provides a level of mitigation, in that people living around the site and living progressively on the site (as parts of the development are completed and occupied) will be aware of progress towards completion – this is supported by the liaison arrangements between contractor and the local community. In principle, whilst not part of the assessment of the proposed development, this also applies to the development of the later Masterplan elements.

The construction of the proposed development is programmed to take three years and, in that time, a relatively large population would be expected to occupy the completed, largely residential units. Their experience in living on the site will continue to emerge and develop as the later scheduled parts of the proposed development proceed towards completion.

The Outline CEMP references construction phase mitigation measures which have relevance to Landscape and Visual Impacts created during the Construction phase of the Proposed Development. An outline Construction Environmental Management Plan (CEMP) has been developed by AtkinsRealis and is included with this planning application. The CEMP will be updated by the Construction Manager, Environmental Manager, Resource Manager and/or Ecological Clerk of Works, as required if site conditions change, and for any planning conditions that may be imposed. The CEMP will be implemented and adhered to by the construction Contractor(s) and this is a working document which requires continuous review and amendment throughout the construction phase by both parties, to ensure effective mitigation.

7.9 Archaeology and Cultural Heritage

Heritage is an irreplaceable resource, so it is recognised that cultural resources will be safeguarded for future generations. Construction activities have the potential to impact on archaeology and heritage through the destruction or disturbance of sites or artefacts.

7.9.1 Risk Identification

Contractors shall undertake a qualitative archaeological and heritage risk assessment or appraisal prior to the commencement of construction activities. An example risk assessment is shown in Table 7.16.

Table 7.16 - Example of Archaeology and Cultural Heritage Risk Assessment

Risk Assessment	Example Procedure
Identify the location of all sensitive receptors within or adjacent to the construction site.	Mark a site plan with the location of all potential receptors including villages, forts, palaces, houses, and towers. The site plan will be updated and approved by the appointed project archaeologist.
	This will help the planning of the overall layout of the construction site.
Identify the construction activities that may affect the receptors identified.	These could include depots, storage areas, excavation, waste storage, haul roads etc.
Evaluate the risk of the construction activities damaging the identified receptors.	Assess the likelihood of an activity causing pollution, damage or harm.
Implement mitigation to eliminate or reduce risks.	Use the following hierarchy to manage the risk: Remove the risk (different construction methods/activities). Control the source (modify construction methods or operations - alternative haul roads). Protect the receptor (screens).
	Identify the location of all sensitive receptors within or adjacent to the construction site. Identify the construction activities that may affect the receptors identified. Evaluate the risk of the construction activities damaging the identified receptors. Implement mitigation to eliminate or

Risk Assessment	Example Procedure
	Put emergency procedures in place.

7.9.2 Archaeology and Cultural Heritage Management Plan

Contractors will develop, implement and maintain an Archaeology and Heritage Management Plan. The Plan will include but not be restricted to the mitigation measures below (Table 7.17).

Table 7.17 – Archaeology and Cultural Heritage Mitigation Measures

Activity

Mitigation Measures

Cultural Heritage –
Archaeology EIAR
Chapter Mitigation
Measures &
Monitoring
Requirements

A pre-construction programme of targeted archaeological test trenching under licence by the National Monuments Service, will be carried within the proposed Masterplan site inclusive of the proposed development site. Test excavation at predevelopment phase will identify the nature, scope and survivability of subsurface archaeological, industrial and maritime heritage. This will assist in quantifying the extent of the subsurface heritage and ensure that a well-planned and structured or phased approach to monitoring and, where applicable, archaeological excavation occurs to minimise or eliminate any adverse impacts upon construction schedules.

Archaeological monitoring of all groundworks shall be incorporated into the construction phase, subject to the findings of the predevelopment archaeological test excavation.

Depending upon the results of the archaeological test excavation and archaeological monitoring, as well as archaeological excavation (where applicable), their findings can be incorporated into the operating of the Cleeves Riverside Quarter.

In the event of discovering subsurface survival of the industrial and maritime heritage in the form of physical or structural remains, consideration shall be given to the exposure of these structures to public viewing to allow for full visual access and interpretation of the relevant heritage. Options such e explored including full or partial pedestrian access; enclosed but visually accessible methods; restored ground surface with distinguishing or tactile surfaces to highlight the nature and extent of subsurface structures.

Any resulting artefactual heritage shall be conserved where applicable and presented in an on-site location dedicated to its overall industrial and maritime heritage, together with full interpretation of the site. Presentation of both the conservation and archaeological works can form a significant part of any on-site feature, which could provide an appropriate beneficial context of Limerick Twenty Thirty. The Flaxmill Plaza has adequate space to accommodate such requirements should the need arise. Further, there are many existing heritage buildings which could be adapted as part of Phase II to accommodate such works.

All required onsite archaeological excavation mitigation measures will be enacted prior to and during the construction phase and, therefore, no cultural heritage mitigation measures requiring monitoring are predicted during the operational phase of the proposed development.

Cultural Heritage – Architectural Heritage EIAR Chapter Mitigation Measures &

Incorporated Design Mitigation

<u>Heritage led process</u> - The designs for the redevelopment have been informed by an understanding of heritage interest. The assessment of the site, research of the site and buildings histories have guided a sophisticated appreciation of importance. This has guided an approach to the division of the site into character areas and informed

Mitigation Measures

Monitoring Requirements

proposals for change ranging from demolition through to minor changes to existing walls, many of which are ruins. This has informed the resolution of a conservation strategy set out in an overarching site plan in drawing 'CRQMP-FCBS-ZZ-XX-DR-AA-1901' within appendix E of the ADR and a series of mitigation strategies contained within chapter 7.0 of the ADR.

Demolition and Removal Principles

- Selective demolition typically focused on buildings of little or negative significance to enable the successful reuse of the wider site.
- Demolition is described as minimised to only those buildings necessary to permit future reuse and development. Section 7.9 of the ADR includes detailed proposals for the retention of the facades of the former Linen Store.
- Removal of hazardous material from the site making access and use safer and permitting the progression of repair works.

Preservation by Record

Current Strategy - Where buildings of cultural significance are identified for demolition, the intention is to preserve the building by record. Building recording and the salvaging of fabric of interest is proposed. Material is to be set aside and reuse in the landscape and in the repair of the retained historic structures.

Interventions:

- Designs for new interventions describe an approach that is sympathetic to the special character of the buildings and the site as a whole.
- Where elements are wholly new, they are intentionally designed to be read as such. Complimentary materials ensure no loss of quality.
- Structural interventions to consolidate the boundary walls along the North Circular Road have been designed to avoid and minimise potential impact to the historic walls.

Landscape and Boundary:

- The line of the site boundary has been preserved. While the boundary wall is noted for reduction in height and partial removal, the threshold between the street and mill site will remain clearly legible.
- Salvaged materials will be a feature of the landscape. Details will need to be developed once the progression of demolition activity permits the preparation of a detailed schedule of material, building on the work completed by ACP and contained in appendix 9.3.

Architecture and materials – The articulation of the building facades, notably that of the proposed building to O'Callaghan Strand, respond to the mill context, see ADR 7.8. Materials have also been selected to match the colour and tone of the context, see ADR 7.7. The materials for the buildings in the Quarry are described in section 8. Stonetown Terrace is described in section 6.7. Common to these proposals is the contextual nature of the materials. Each set of buildings seeking to respond to the character of its area while also reflecting the close relationship to the Mill Complex.

Mitigation Measures

Architecture - form, scale, massing – The buildings have been described in detail earlier in this assessment. Section 8.1 of the ADR offers commentary on the stepped height and massing of the buildings within the Quarry. Stonetown Terrace is described in section 6.1 through to 6.7. Common to these proposals is the reference made to massing and heights within the context. Each set of buildings is seeking to respond to the character of its area while also reflecting the close relationship to the Mill Complex.

Additional Mitigation

<u>Technical Design Phase Mitigation</u> – Technical designs shall be resolved in sufficient detail to provide the contractor with the information needed to protect built heritage. Where existing and historic buildings are concerned this typically requires designs to be resolved in detail with potential to be adapted and varied once works are on site. This is best achieved by providing sufficient time and knowledge to accommodate site phase discoveries. These should inform adjustments to the designs to ensure conservation principles can be applied to preserve the assets special interest.

<u>Engagement with a Competent Authority</u> – As required, consultation with the Conservation Officer including submission of reports, detailing compliance status and any incidents or corrective actions shall be taken.

Prior to demolition

A conservation surveyor / architect shall be employed to offer guidance on the process for preservation of interest where the removal of structures and features from site is proposed.

A demolition methodology shall be prepared by the contractor in consultation with the accredited conservation architect / surveyor. This must reflect the philosophy set out in the design documents and as described in sections 2.5 of the ADR. In brief the principles distinguish demolition from dismantling. They require that where 'demolition' is proposed to buildings that possess special interest, 'dismantling' is to be the method in order that demolition phase recording can be undertaken and to ensure the maximum retention of fabric for reuse. The methodology shall be agreed and in place prior to the commencement of demolition.

During demolition and during construction

Record of Architectural Heritage – Refer to the methodology contained in section 6 of the Building Recording Reports under Appendix 9.3. A comprehensive record of findings relative to the existing architectural heritage shall be maintained. This will be through the augmentation of the record created to support the design development. This process will further the pattern of recording undertaken since 2019 and which has been periodically updated with new information obtained through survey and investigation. The record shall include the following:

- Statement of Significance periodic updates when new information comes forward
- Building Records update with enhanced record obtained via observations of dismantling / demolition.

Mitigation Measures

- Salvage and Reuse coupled with Building Recording, development of the salvage record with design review to allow for materials to be retained and utilised within the repair works.
- Social History & Interpretation a consultant must be employed to lead on the development of the site's social history. Findings must inform site-wide interpretation.

Stabilisation and Repair

The following describes measures that shall be implemented where existing structures are removed resulting in change to retained structures.

Designs for the consolidation and repair of structures within the Flaxmill Complex that possess special interest shall be designed by a conservation accredited architect / surveyor. These shall be executed in accordance with conservation principles by appropriately qualified, experienced and skilled crafts people. This is specifically relevant to buildings affected by the removal of abutting and unsympathetic later phase additions notably the Main Mill rear extensions, lean-to on the cold store / weaving mill and the warehouse abutting the Cheese Plant. Detailed proposals shall be prepared prior to the commencement of demolition. Where there are constraints to access the proposals must be as advanced as far as is reasonably practicable and then developed as soon as safe access is available. Stabilisation measures and repairs shall be implemented as soon as is practicable during construction to ensure retained structures are stabilised.

Construction Phase Mitigation

Current Stabilisation Strategy – Prior to demolition identified within the Phase II development proposals, work to stabilise the Main Mill shall secure vulnerable fabric. This exemplifies an approach to mitigate risk to the protected structures. Progressing the repair and stabilisation of vulnerable structures will guard against unintended loss and / or the exacerbation of instability that can arise from adjacent construction activity. Further to this, the phased approach to progress stabilisation and repairs shall continue in parallel with future development. Protected structures that have yet to be stabilised prior to the progression of new development should be assessed and secured to minimise the risk of construction phase activity giving rise to unintended loss.

Construction Phase Plan - Prior to commencement of demolition or construction activity, the contractor shall prepare a construction phase plan with regard for current assessments of the condition of the historic buildings identified for retention and that have potential to be negatively impacted by construction activity. The plan shall include measures to prevent unintended loss such as that which would arise from a vehicle colliding with a building. It shall include the preparation of briefing packs for all parties involved in works on site to ensure the workforce are aware of the sites special interest. This will better able site operatives to be custodians in the care of the historic structures.

Temporary Protection - Where historic fabric is to be addressed by the works, temporary measures shall be designed to first avoid impact and second to minimise loss and impact. A team of experienced conservation specialist shall be in place to support the contractor so that risk of adverse impacts on the heritage can be minimised.

Appropriate Knowledge and Oversight - The contractor shall have an appropriately qualified heritage manager to help ensure protection and care of the site's heritage is

Mitigation Measures

managed. Salvage of materials shall be led by a conservation specialist to ensure maximum retention for reuse and / or appropriate crating where fabric has to be stored. This approach will help minimise or eliminate adverse impacts on construction schedules and heritage.

Construction Phase Interpretation Plan - Where the historic buildings are to be shrouded in scaffold, there is an opportunity to exploit this as a canvas for interpretation to share the story of the site and project. Similarly, site hoardings must provide opportunities of engagement with the public. This will have a positive effect. The contractor and interpretation consultant shall work closely together to develop a construction phase interpretation plan. This can be used in co-ordination with LTTs communications strategy.

Operation Phase Mitigation

The following is a summary of the operational phase mitigation measures that will be embedded in the detailed designs. Many of these will only become clear once demolition has progressed as this will afford discovery of features for inclusion in the interpretation.

<u>Fabric and Features</u> – Where industrial or maritime heritage fabric is discovered this will be incorporated into the designs and placed on public view to allow for full visual access and interpretation.

Public Access and Interpretation:

- Conserve heritage features discovered during earlier phases
- Full or partial pedestrian access to heritage features
- Interpretation displays

Ongoing Heritage Management:

- Ensure that the presentation of heritage forms a significant part of any publicly accessible spaces specifically interpretive facility.
- Facilities to provide educational and cultural value, supporting the broader context of the development and its relationship to local heritage.

Monitoring and Review:

• Continue to monitor the condition of the buildings and ensure their ongoing protection and to address any emerging risks or deterioration.

These measures help to enhance the redevelopment and protection of heritage assets, ensuring that the operational phase of the project contributes positively to the understanding and appreciation of the site's historical value. According to the referenced assessment, if these measures are implemented, there are no anticipated residual impacts during the operational phase.

7.10 Traffic Management

7.10.1 Risk identification

Contractors shall undertake a traffic management risk assessment or appraisal prior to the commencement of construction activities. An example risk assessment is shown in Table 7.18.

Table 7-18 - Example of Traffic Management Risk Assessment

	Risk Assessment	Example Procedure	
01	Identify the location of all traffic sensitive areas within or adjacent to the construction site.	Mark a site plan with the location of all potential traffic sensitive areas including villages, forts, palaces, houses, schools, shopping districts, commercial/leisure areas roads and other rights of way. This will help the planning of the overall layout of the construction site and enable the identification of suitable sites for vehicle/pedestrian entrances, storage areas etc.	
02	Identify the construction activities may affect the traffic sensitive areas identified.	These could include depots, storage areas, excavation, waste storage, haul roads etc.	
03	Evaluate the risk of the construction activities impacting on traffic sensitive areas.	Assess the likelihood of an activity causing harm or obstruction.	
04	Implement mitigation to eliminate or reduce risks.	Use the following hierarchy to manage the risk: Remove the risk (different construction methods/activities). Control the source (modify construction methods or operations - alternative haul roads). Protect the receptor (screens, signs, barriers). Put emergency procedures in place.	

7.10.2 Traffic Management Control Plan

Contractors will develop, implement and maintain a Traffic Management Control Plan.

Table 7-19 - Traffic Management Mitigation Measures

Activity	Mitigation Measures
Traffic EIAR Chapter Mitigation Measures & Monitoring Requirements	An Outline Construction Traffic Management Plan has been developed to mitigate traffic impacts during the construction phase. This report is provided in the Appendix of the CEMP. This report will be developed by the contractor to form the Construction Traffic Management Plan. The contractor's detailed Construction Traffic Management Plan will address the following key issues:
	 A dedicated person will be appointed for the management of the deliveries during the construction stage. It will also be this person's duty to make sure the construction routes are adhered to without fail.

- The Applicant will conduct a pre- and post-construction condition survey on the public road, with the developer liable to repair any damage to the public road attributed to the construction of the proposed development.
- Deliveries will be scheduled to avoid morning and evening peak hours. This
 will avoid HGV traffic arriving during the morning peak hours and creating
 conflict with local residents' commute or school run. Construction personnel
 will be encouraged to car-pool, or to travel to site in minibuses.
- During the construction phase, clear construction warning signs will be
 placed on the approach to the site access point, in accordance with Chapter
 8 of the Traffic Signs Manual. The site entrance points will also be
 appropriately signed. Access to the construction site will be controlled by
 onsite personnel and all visitors will be asked to sign in and out of the site
 by security/site personnel. Site visitors will receive a suitable Health and
 Safety site induction and Personal Protective Equipment ("PPE") will be
 worn.
- To control, prevent and minimise dirt on the access route and emissions of dust and other airborne contaminants during the construction works, the following mitigation measures will also be implemented.
- Wheel washing facilities should consist of a water bowser with pressure washer. The bowser will contain water only and no other additives. Run-off from this activity will be directed to the drainage situated on the lower boundary of the construction compound. All drivers will be required to check that their vehicle is free of dirt, stones and dust prior to departing from the site.
- Drivers will adopt driving practices that minimise dust generation including a 30km/h internal access road speed limit; and
- Any dust generating activities will be avoided or minimised, wherever practical, during windy conditions.
- Once construction of the Proposed Development is completed, all
 machinery and equipment will be removed and hard standing within the
 Solar Farm site excavated. The area will be regraded with the stockpiled
 topsoil to a natural profile. Road surfaces, road markings, etc. will be fully
 reinstated as is and in such a manner that there is no change to the
 operation of the local road network.

The contractor will develop a detailed Logistics Plan to identify the delivery schedule requirements for every delivery. It is proposed that the contractor will operate a "Just in Time" delivery philosophy to minimise materials stored on site and reduce congestion in and around the works compound.

Monitoring

The proposed development will have the following monitoring requirements:

- The Applicant will conduct a pre- and post-construction condition survey on the public road, with the developer liable to repair any damage to the public road attributed to the construction of the proposed development.
- The Applicant will set up a Project website in order to keep local residents and businesses updated with construction road impacts.

7.11 Contaminated Land

7.11.1 Risk Identification

Contractors shall undertake a contaminated land risk assessment or appraisal prior to the commencement of construction activities. An example risk assessment is shown in Table 7.20.

Table 7-20 - Example of Contaminated Land Risk Assessment

	Risk Assessment	Example Procedure
01	Identify the location of contamination risks by undertaking site visits and desk based studies of relevant documents - EIA etc.	Mark a site plan with the location of all potential contamination risks including waste deposits, petrol stations, oil stores etc.
02	Identify the construction activities may create ground contamination.	These could include depots, storage areas, waste storage, etc.
03	Evaluate the risk of the construction activities leading to ground contamination.	Assess the likelihood of an activity causing pollution, damage or harm.
04	Implement mitigation to eliminate or reduce risks.	Use the following hierarchy to manage the risk: 1. Remove the risk (different construction methods/activities). 2. Control the source (modify construction methods or operations) 3. Protect the ground (screens). 4. Put emergency procedures in place.

7.11.2 Contaminated Land Control Plan

Contractors will develop, implement and maintain a Contaminated Land Control Plan. The Plan will include but not be restricted to the mitigation measures below (Table 7.21).

Table 7.21 – Example of Contaminated Land Mitigation Measures

Activity	Mitigation Measures
General	As part of the asbestos management strategy, mitigation specific measures have been proposed by Phoenix Environmental Safety Ltd in their 2025 Asbestos Survey Report. These measures include, but are not limited to the following:
	 Asbestos containing materials should be removed prior to the commencement of any works;
	 A licensed asbestos removal contractor should be contracted for removal and disposal of asbestos waste; and,
	 All asbestos removal works shall be undertaken in full compliance with the Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006–2010 (S.I. No. 386 of 2006).

Activity Mitigation Measures

Stripping and management of hardstanding, made ground, subsoil and C&D waste materials arising from the demolition of existing buildings and structures will be carried out in a controlled way, coordinated with the proposed staging for the development, and will be removed from Site as soon as possible.

Temporary concrete crushing activity will be carried out by the Contractor(s) in accordance with the requirements of Limerick City and County Council / EPA, ensuring that all required statutory permits / licences (Waste Facility Permit, Certificate of Registration, or EPA Licence) are in place prior to commencement of such operations, and compliance of same during the relevant period of works.

All waste material will be removed for offsite disposal or reused to a suitably licenced / permitted waste facility, or via. Article 27 (where applicable), in accordance with the Construction & Demolition Resource and Waste Management Plan (CDRWMP) (ARUP 2025), submitted as part of this planning application, The Contractor(s), in consultation with the Client and the Engineer, will be responsible for removing and replacing with suitable material as required.

All waste arising from the proposed development, during the Demolition and Construction phase (including enabling works) will be managed in line with the principles and objectives set out in the Construction & Demolition Resource and Waste Management Plan (CDRWMP) (ARUP 2025), submitted as part of this planning application, ensuring compliance with best practice in prevention, segregation, recovery and disposal and align with regional waste infrastructure principles and policy. It will be the contractors responsibility to ensure that a project specific Detailed Resource and Waste Management Plan (developed in accordance with relevant 2021 EPA Guidance, and the CDRWMP (ARUP, 2025)) is fully implemented onsite for the duration of the project.

The duration that subsoil layers are exposed to the effects of weather will be minimised. Disturbed subsoil layers will be stabilised as soon as practicable (e.g., backfill of service trenches, construction of road capping layers, construction of building foundations and completion of landscaping).

Based on CIRIA 665 guidance, gas protection measures shall be required for the proposed Stonetown Terrace building, based on this part of the Site being CS2 (low risk). The typical scope of protective measures for residential buildings (not low rise traditional housing), such as apartment blocks (for CS2) is as follows (CIRIA 665, 2007):

- **Option a)** Reinforced concrete cast in situ floor slab (suspended, non-suspended or raft) with at least 1200g damp proof membrane (DPM) and underfloor venting; or;
- Option b) Beam and block or pre-cast concrete and 2000g DPM / reinforced gas membrane and underfloor venting; and,
- All joints and penetrations sealed.

Gas protection measures (based on the above scope) for the Stonetown Terrace building, will be incorporated into the Detailed Design Stage of the proposed development; and will be installed by experienced and trained specialists and will be subject to inspection and certification, during the Construction Stage. The Contractor, in consultation with the Client and the design team, will be responsible for ensuring that these measures are fully implemented and verified.

Mitigation Measures

Material at the following locations requires excavation, and will not be reused onsite. Based on the results of environmental testing, this material is unsuitable for the proposed site end use:

- Stonetown Terrace Building all onsite C&D material; and made ground / subsoils to a depth of 1.5m BGL (existing ground level) or to the maximum excavation / piling depth of foundations (if greater).
- O'Callaghan Strand Building all made ground / subsoils to a depth of 1.0m BGL (existing ground level) or to the maximum depth of excavation for foundations (if greater).
- Flax Mill site (PBSA / Quarry Building) all made ground / subsoils to a depth of 3.0m BGL (existing ground level) or to the maximum depth of excavation for foundations (if greater).
- Main Shipyard site all made ground / subsoils excavated to facilitate the installation
 of proposed utilities (including drainage), tanks and any proposed underground
 structures in this area.

This material will be classified, managed, transported and disposed of offsite in accordance with the requirements of the Waste Management Act 1996, as amended, the Waste Framework Directive 2008/98/EC of the European Parliament and Council on waste and any relevant subsequent waste management legislation.

At all other locations onsite, excavation of material will be minimised as much as possible to reduce the impact on land, soils and geology. Where soil material is unsuitable for use or where excess soil is generated with no certainty for use, soils (including Made Ground) will be appropriately sampled and tested prior to offsite removal. Soils will be classified in accordance with the EPA Guidance (2019). It will be the contractors responsibility to ensure that all waste soils are classified correctly and managed, transported and disposed of offsite in accordance with the requirements of the Waste Management Act 1996, as amended, the Waste Framework Directive 2008/98/EC of the European Parliament and Council on waste and any relevant subsequent waste management legislation.

Further mitigation measures for the prevention of soil / bedrock contamination during construction are proposed below. The contractor will be responsible for ensuring these measures are fully implemented. Mitigation measures outlined in Chapter 11- Water are also applicable to the protection of soils and geology during the construction phase:

- Health and safety risk assessments, method statements (RAMS) and the use of appropriate Personal Protective Equipment (PPE) will be adhered to by all site personnel and site visitors;
- Earthworks / piling plant and vehicles delivering construction materials to site will be confined to predetermined haul routes around the site for each phase of the Proposed Development;
- The need for vehicle wheel wash facilities will be assessed by the Contractor depending on the phasing of works and onsite activity and will be installed as needed, near any site entrances and road sweeping implemented as necessary to maintain the road network in the immediate vicinity of the site;
- Dust suppression measures (e.g., dampening down) will be implemented as necessary during dry periods;

Activity Mitigation Measures

- All excavated materials will be stored away from the excavations / immediate works area, in an appropriate manner at a safe and stable location. The maximum height of temporary stockpiles will be 3m;
- A comprehensive monitoring and supervisory regime including monitoring of all
 excavations and stability assessments as required will be put in place to ensure that the
 proposed construction works do not constitute a risk to the stability of the site;
- In the event that any additional evidence of ground contamination is encountered beneath the site, during the construction works, works within that specific area will cease. Advice will be sought from an experienced contaminated land specialist to assess any associated potential environmental and/ or human health risks associated with this material and to ensure that any such material is managed and disposed of in accordance with the requirements of the Waste Management Act 1996, as amended, the Waste Framework Directive 2008/98/EC of the European Parliament and Council on waste and any relevant subsequent waste management legislation.
- The employment of good construction management practices will serve to minimise the
 risk of pollution from construction activities at the Proposed Development in line with the
 Construction Industry Research and Information Association (CIRIA) publication entitled,
 Control of Water Pollution from Construction Sites, Guidance for Consultants and
 Contractors, CIRIA C532 (2001) which are also detailed in Chapter 11– Water;
- Temporary onsite groundwater and gas monitoring wells should be either suitably
 protected for the duration of the works and / or appropriately decommissioned in
 accordance with best practice guidance (SEPA guidance document "Good Practice for
 Decommissioning Redundant Boreholes and Wells").
- All fill material imported to the site for the Proposed Development will be clean, uncontaminated, suitable engineering grade fill material;
- Specifically, regarding pollution control measures, the following will be adhered to; Fuels, lubricants and hydraulic fluids for equipment used on the construction site, as well
 as any solvents, oils, and paints will be carefully handled to avoid spillage, properly
 secured against unauthorised access or vandalism, and provided with spill containment
 according to best codes of practice;
- Waste oils and hydraulic fluids to be managed in accordance with best practice requirements and pollution measures as detailed in the CEMP;
- Strict supervision of contractors will be adhered to in order to ensure that all plant and
 equipment utilised on-site is in good working condition. Any equipment not meeting the
 required standard will not be permitted for use within the site. This will minimise the risk
 of soils and bedrock becoming contaminated through site activity; and,
- The highest standards of site management will be maintained and utmost care and vigilance followed to prevent accidental contamination or unnecessary disturbance to the site and surrounding environment during construction. A named person will be given the task of overseeing the pollution prevention measures agreed for the site to ensure that they are operating safely and effectively.

The above mitigation measures will be incorporated (as required) during Detailed Design Stage and will form part of a site-specific CEMP which will be implemented during the Demolition and Construction Stage (including initial Site preparatory / enabling works).

Activity Mitigation Measures

All temporary construction compounds and site entrances are to be removed upon completion of the demolition and construction phase. Such areas are to be reinstated in accordance with the landscape site layout plan and engineer's drawings. All construction waste and / or scrapped building materials are to be removed from site on completion of the demolition and construction phase. Oil, fuel etc. storage areas are to be decommissioned on completion of the construction phase. Any remaining liquids are to be removed from site and disposed of at an appropriately licenced waste facility.

7.12 Soil Erosion and Sedimentation

Soil eroded during land disturbance can wash away and contaminate storm water drains and nearby water bodies. The plan establishes a series of mitigation and management measures to control and minimise these issues if required. Water erosion potential depends on the intensity of the rainfall and/or construction discharges, the soil type and topography. This section identifies the potential causes of erosion and sedimentation which may arise from construction and provides guidance on the management, control and disposal of waste.

7.12.1 Risk Identification

Contractors shall undertake a qualitative soil erosion and sedimentation risk assessment or appraisal prior to the commencement of construction activities. An example risk assessment is shown in Table 7.22.

Table 7.22 – Example of Soil Erosion and Sedimentation Risk Assessment

	Risk Assessment	Example Procedure	
01	Identify the location of all activities that could result in erosion and sedimentation, for example dewatering, and sensitive receptors within or adjacent to the construction site.	Mark a site plan with the location of all water courses, surface water features, boreholes, field drains, ecologically sensitive areas including surface and foul drainage systems and other potential receptors. This will help the planning of the overall layout of the construction site and enable the identification of suitable sites for high-risk activities such as dewatering, haul routes and wash out areas.	
02	Identify sensitive receptors off site or downstream of the construction project that could potentially be affected by the works. For example, water courses and ecologically sensitive areas/nature reserves.	Mark a site plan with sensitive receptors outside the site boundary. This will help the planning of the overall layout of the construction site and enable the identification of suitable sites for high-risk activities such as dewatering, haul routes and wash out areas.	
03	Identify the construction activities and sources of sedimentation/erosion that may affect the water receptors identified.	These could include excavations, dewatering, water course crossings, as well as general sources of pollution such as surface water runoff and concrete use.	
04	Evaluate the risk of the construction activities polluting the identified water receptors.	Assess the likelihood of an activity causing pollution. Assess the significance of the harm sedimentation/erosion would cause to a particular water receptor.	

	Risk Assessment	Example Procedure	
05	Evaluate the risk of the construction activities contributing to and/or being affected by the groundwater table.	Assess the likelihood of an activity contributing to raised groundwater levels or being affected by these. Assess the significance of the harm additional water would cause to groundwater or other projects/receptors and the significance of the high water table on construction.	
06	Implement mitigation to eliminate or reduce risks.	 Use the following hierarchy to manage the risk: Remove the risk (different construction methods/activities). Control the source (modify construction methods, provide adequate bunding for storage areas, install measures such as silt fences or ditches to control runoff). 	
		Protect the receptor (provide hard standing for compounds/storage areas, filter, control, contain discharges, ensure appropriate environmental permits are in place). Put area reconstructions of place.	
		4. Put emergency procedures in place.	

7.12.2 Soil Erosion and Sedimentation Management Plan

Contractors will develop, implement and maintain an Erosion and Sedimentation Management Plan. The Plan will include but not be restricted to the mitigation measures below (Table 7.23).

Table 7.23 -Soil Erosion and Sedimentation Mitigation Measures

Activity	Mitigation Measures
Soil Erosion	Methods to control erosion need to take into account the factors causing erosion – rainfall discharge intensity, soil type and topography. Possible erosion control measures will include, but are not limited to the following:
	 Avoid the creation of steep slopes. Consider implementing terraces instead of long steep slopes to avoid runoff from precipitation.
	 Do not release heavy discharges of water onto the soil.
	 Prevent over-watering of loose areas for dust suppression.
	 Keep site traffic to designated routes.
	 Consider covering temporary roads and routes within site with either asphalt or stone. Appropriate rehabilitation will need to be applied.
	 Undertake regular leak monitoring and maintenance of dewatering pipes.
	 Maintain recommended maximum vehicle weightings to avoid destabilization and subsequent erosion of soil surface.
	 Progressive rehabilitation of disturbed land or stockpiles by establishing temporary or permanent vegetation supported by irrigation.
	 Cover excess work areas with geotextile type liners.
	 Provide collection systems under machinery or equipment during wash down to prevent erosion from runoff.
	Flow attenuation - Employ mechanisms to control run off of precipitation such as temporary structures to slow running water to facilitate pollutant removal and infiltration and reduce runoff.
Sediment	Possible sedimentation control measures will include but are not limited to the following:
Control	Silt reduction measures on site will include a combination of silt fencing.

Activity Mitigation Measures Place sediment traps on all drainage lines such as geotextile lining. Construct collection channels capable of collecting all runoff water during storms if it contains fine clay particles. Use contained concrete washout control facility. Treat and discharge runoff water from reservoir at controlled flow rate through storm water discharge network. Inspect and clean the collection channels and reservoir on regular basis to prevent sediment

Stabilise the site as soon as possible after construction

build up.

8. Emergency Response Plan

The contractor shall establish, implement and maintain procedures to identify and manage potential environmental emergency situations and potential accidents. The contractor shall respond to actual emergency situations and prevent and mitigate adverse environmental impacts.

The contractor will periodically test, review and update emergency preparedness and response procedures.

8.1 Key Requirements

During construction accidents, incidents and emergencies that have an environmental impact may occur. In the event of an emergency, the first response is to locate the source of that which is giving rise to the environmental impact where appropriate and stop continuation of the situation, followed by the containment, control and mitigation of the situation.

At the construction site The Emergency Response Procedure will be displayed within the Site Office / compound.

A copy of the Material Safety Data Sheets for all the chemicals used on the project site will also be kept at the site office.

The main objectives of the Emergency Response Plan are to:

- Ensure that all means are available to contain the consequences of an accidental spill, fire or release of oil/fuel;
- Ensure that employees are suitably trained to respond to fire and spill;
- Ensure that proper reporting takes place; and
- Ensure that proper investigation is undertaken.

All contractor personnel and sub-contractors will be instructed and rehearsed, as appropriate, in the requirements of the emergency response procedure. Following control of an incident or emergency, an investigation will be conducted, and corrective actions identified and addressed. The Contractor's Environmental Manager will verify the close out of environmental related actions and notify the Employer and/or the Employer's Representative of any emergency.

8.2 Emergency Incidents

Emergency incidents are those occurring that rise to significant negative environmental effects including but not limited to the following:

- Any malfunction of any mitigation measure and/or environmental protection system;
- Any emission that does not comply with requirements of the contract and relevant licenses/permits;
- Any circumstance with potential environmental pollution; or
- Any emergency that may give rise to environmental effects (e.g. significant spillages or fire outbreak).

8.3 Spill Contingency Plan

The main causes of contamination can occur through:

Spillage of hazardous material including fuel oils, waste materials or chemicals;

- Spillage of wastewater sewage and other liquid effluents; and
- Spillage of contaminated wash down water with oils, chemicals etc from vehicles, equipment and machinery.

Prior to commencing activities on site, Contractors will develop, implement and maintain a Spill Contingency Management Plan. The Plan will include but not be restricted to the mitigation measures below (Table 8.1).

Table 8.1 – Spill Mitigation Measures

Activity

Mitigation Measures

Mitigation Actions /Emergency Response Contractors will carry out regular inspections/audits of hazardous materials usage, handling and storage areas and regular/thorough maintenance of vehicles and hydraulic systems and inspections of sanitary facilities and disposal.

All contractors handling hazardous materials will keep appropriate spill clean-up material adjacent to storage and maintenance areas.

Minimise the amount of diesel, oil, paint, thinners and other chemicals stored on site that pose potential spillage environmental hazards and use materials that minimise environmental impact such as lead-free paints, asbestos free materials etc.

Storage areas will be located away from drains/trenches/wastewater collection devices in an impervious bund area (volume of the storage bund >110% of the largest storage tank contained within the bund).

Collection systems will be provided/bunded if necessary, under machinery or equipment that may leak hydrocarbons/hazardous substances.

The contractor shall be responsible for training all staff in the procedures for handling spills and shall provide all staff with appropriate personal protective equipment.

The contractor shall provide all staff with appropriate personal protective equipment.

Avoid impacting adjacent sites by ensuring all contractors activities, equipment and waste storage is confined to the allocated site boundary.

In the event of a spill:

- Identify and stop the source of the spill and alert people working in the vicinity;
- Notify the Environmental Manager immediately giving information on the location, type and extent of the spill so that they can take appropriate action;
- If applicable, eliminate any sources of ignition in the immediate vicinity of the incident;
- Contain the spill using spill control materials, track mats or other materials as required. Do not spread or flush away the spill;
- If possible, cover or bund off any vulnerable areas where appropriate such as drains, watercourses and/or sensitive habitats;
- If possible, clean up as much as possible using the spill control materials;
- Contain any used spill control material and dispose of used materials appropriately using a fully licensed waste contractor with appropriate permits so that further contamination is limited;
- The Environmental Manager shall inspect the site as soon as practicable and ensure the necessary measures are in place to contain and clean up the spill and prevent further spillage from occurring; and
- The Environmental Manager will notify the appropriate stakeholders such as Limerick City
 County Council, National Parks and Wildlife Service and/or the EPA.

8.4 Emergency Incident Response Plan

The Contractor will be required to detail emergency incident procedures in the detailed CEMP and develop an Emergency Incident Response Plan. The Plan will contain emergency phone numbers and method of notifying local

authorities, statutory authorities and stakeholder. The Plan will include contact numbers for key personnel. The Contractor will ensure that all staff and personnel on site are familiar with the emergency requirements.

In the case of work required in an emergency, or which if not completed would be harmful or unsafe to workers, the public to local environment, Limerick Twenty Thirty DAC will be informed as soon as reasonably practicable of the reasons and likely duration. Examples may include: where the ground needs stabilising if unexpected ground conditions are encountered or equipment failure.

In the event of an emergency incident occurring, the Contractor will be required to investigate and provide a report to include the following, as a minimum:

- A description of the incident, including location, type of incident and the likely receptor;
- Contributory causes;
- Negative effects;
- Measures implemented to mitigate adverse effects; and
- Any recommendations to reduce the risk of similar incidents occurring.

Further, if any sensitive receptor is impacted, the appropriate environmental specialists will be informed and consulted with accordingly.

Any response measures will be incorporated into an updated Emergency Incident Response Plan.

8.5 Emergency Access

The Contractor will be required to maintain emergency access routes throughout construction and identify site access points for the working area. Refer also to Section 2, specifically Figures 2-3 to 2.11 which present an overview of access / egress and working areas during each stage of the construction phase.

8.6 Extreme Weather Events (including flooding)

Refer also to Section 2, specifically Figures 2-3 to 2.11 which present an overview of access / egress, flood protection measures and working areas during each stage of the construction phase.

To mitigate flood risk (or unacceptable residual flood risk) during the construction period, the contractor will employ the following mitigation measures as part of the site preparation for the construction phase (ARUP, 2025):

- Demolition & Construction Stage Flood Protection Measures:
 - Elevating the site compound / site storage areas at the Shipyard site via fill placement to an appropriate level (i.e. 5.7m AOD based on the outcome of the FRA (ARUP, 2025).
 - Constructing and/or implementing temporary flood defences at the Shipyard site (i.e. civil works and/or proprietary flood defence products, or a combination of both) to an appropriate level (i.e. 5.7m AOD based on the outcome of the FRA (ARUP, 2025).
 - In the event of a tidal flood warning, materials stored in the Shipyard site compound will be removed immediately to avoid the risk of flooding to neighbouring properties.
- Preparation of a Flood Emergency Response Plan for Construction Phase (FERP-CP) A FERP-CP will be developed by the Contractor(s) for the project, which will contain a detailed response plan to a tidal flood event on the Shannon occurring while construction was active on the site, which will include the following mitigation measures (noting this not necessarily to be an exhaustive list of measures) (ARUP, 2025):

- Development of a FERP-CP in the first instance;
- Definition of designated roles within the construction team / firm, and associated responsibilities with regard to the implementation of the FERP-CP;
- Having an appropriate nominated person (e.g. site manager) who will be responsible for monitoring weather warnings, flood warnings, and storm-tide warnings (i.e. the 'Construction Phase Flood Manager') this will be a part-time role that will only ever come into play on a periodic basis (or maybe not at all over the course of the construction phase);
- Communication protocols to the site team to alert them to the possibility of a flood and the need to move any
 machinery, plant, equipment, etc, to an appropriate location within the site/site compound if safe to do so, and
 to evacuate the site;
- General protocols around where and how machinery, plant, other equipment and materials are stored / stockpiled / located within the site compound(s), noting that all fuels, chemicals, oils, paints and any other hazardous materials will be stored within the construction compound at the Flaxmill site, which is located outside of the predicted flood zone.
- Signage and other information on site drawing awareness to FERP-CP protocols (e.g. materials / plant / equipment storage, evacuation routes, etc).
- The level of the compound and the materials storage areas are to be determined by the contractor and to be confirmed in the Flood Emergency Response Plan for Construction Phase (FERP-CP), taking into account the above mitigation measures, as well as the findings of the FRA (ARUP, 2025).

The Contractor(s) will provide a copy of the FERP-CP (which will take into account any relevant planning conditions, and any relevant future additional requirements via. changes in legislation or best practice guidance) to LCCC for review and comment in advance of commencement of any demolition or construction works onsite.

9. References

HRA Planning (2025) Environmental Impact Assessment Report;

ARUP, (2025), Flood Risk Assessment,

Air Pollution Act, 1987 (Air Quality Standards) Regulations, 1987, as amended, 2011 (S.I. No. 180 of 2011)

Air Pollution Act, 1987 (Emission Limit Values for use of Asbestos) Regulations, 1990, S.I. No. 28 of 1990

BS 3998; 2010. Tree Work. Recommendations

BS 5228-1:2009+A1:2014 Code of practice for noise and vibration control on construction and open sites – Part 1 Noise and Part 2 Vibration

BS 5837/2012. Trees in relation to design, demolition and construction.

Building Research Establishment (BRE) document entitled 'Control of Dust from Construction and Demolition Activities'

CIRIA (2001). C532. Control of water pollution from construction sites. Guidance for consultants and contractors

CIRIA (2006). C648. Control of water pollution from linear construction projects. Technical Guidance

CIRIA (2008). C679. Invasive species management for infrastructure managers and the construction industry

CIRIA (2015). C741. Environmental Good Practice on Site

CIRIA (2015). C753. SuDS Manual

Environmental Noise Regulations 2006, S.I. No. 140 of 2006

Environmental Protection Agency Act 1992 (Noise) Regulations, 1994 S.I. 174 of 1994

European Communities (Construction Plant and Equipment) (Permissible Noise Levels) Amendment Regulations 1996, S.I No. 359 of 1996 and 2001, S.I No. 632 of 2001)

European Communities (Control of Emissions of Gaseous & Particulate Pollutants from Non-Road Mobile Machinery) Regulations 2007, S.I. No.147 of 2007, as amended, 2011 (S.I. No. 263 of 2011), 2012 (S.I. No. 407 of 2012), 2013 (S.I No. 417 of 2013)

European Communities (Drinking Water) Regulations 2014, S.I. No. 122 of 2014

European Communities (Environmental Liability) Regulations, 2008, S.I. No. 547 of 2008, as amended, 2011 (S.I. No. 307 of 2011), 2015 (S.I. No. 293 of 2015)

European Communities (Noise Emission by Equipment for use Outdoors) Regulations, 2001, S.I No. 632 of 2001, as amended, 2006 (S.I No. 241 of 2006)

European Communities (Shipments of Hazardous Waste Exclusively within Ireland) Regulations 2011, S.I. No 324 of 2011

European Communities (Waste Directive) Regulations 2011, S.I. No. 126 of 2011, as amended, 2016 (S.I. No. 315 of 2016)

European Communities (Waste Electrical and Electronic Equipment) Regulations 2011 (S.I. 355 of 2011), as amended 2011 (S.I. No. 397 of 2011), 2013, (S.I. No. 32 of 2013). 2014 (S.I. No. 149 of 2014)

European Communities Conservation of Wild Bird Regulations 1985, S.I. No. 291 of 1985, as amended, 1986 (S.I. No. 48 of 1986), 1995 (S.I. No. 31 of 1995), 1997, (S.I. No. 210 of 1997), 1998 (S.I. No. 154 of 1998), (S.I. No. 131 of 1999), 2005 (S.I. No. 716 of 2005), 2010 (S.I. No. 65 of 2010), 2011 (S.I. No. 626 of 2011), 2012 (S.I. No. 84 of 2012)

European Communities Environmental Objectives (Groundwater) Regulations 2010, S.I. No. 9 of 2010, as amended, 2016 (S.I. No. 366 of 2016)

European Communities Environmental Objectives (Surface Waters) Regulations, 2009, S.I. No. 272 of 2009, as amended, 2012 (S.I. No. 327 of 2012), 2015 (S.I. No. 386 of 2015)

European Union (Environmental Impact Assessment and Habitats) (Section 181 of the Planning and Development Act 2000) Regulations, 2013, S.I. No. 403 of 2013

European Union (Properties of Waste Which Render It Hazardous) Regulations 2015, S.I. No. 233 of 2015

European Union Batteries and Accumulators Regulations 2014, S.I. No. 383 of 2014, as amended, 2014 (S.I. No. 349 of 2014), 2015 (S.I. No. 347 of 2015)

European Union F Gas Regulations 2006, as amended, 2015, S.I. No. 517 of 2015

European Union Regulation 2037/2000 (CFC's, HCFC's, Halons) - Ozone Depleting Substances. Control of Substances that Deplete the Ozone Layer Regulations 2006, S.I. No 281 of 2006, as amended, 2011 (S.I. No. 465 of 2011)

European Waste Catalogue (EWC) and Hazardous Waste List 2002

Flora (Protection) Order, 2015, S.I. No 356 of 2015

HRA, 2025, EIAR

Invasive Species Ireland (2016). Best Practice Management Guidelines. Japanese Knotweed.

Litter Pollution Regulations 1999, S.I. No. 359 of 1999)

Local Government (Planning and Development) Act 1963, S.I. No. 28 of 1963

Noxious Weed Act, 1936, S.I. No. 38 of 1936

NRA (2005a). Guidelines for the Crossing of Watercourses during the Construction of National Road Schemes

NRA (2005b). Guidelines for the Treatment of Badger Prior to the Construction of National Road Schemes

NRA (2006). Guidelines for the Protection and Preservation of Trees, Hedgerows and Scrub Prior to, During and Post Construction of National Road Schemes

NRA (2008). Guidelines for the Treatment of Otters prior to the Construction of National Road Schemes

NRA (2010). Guidelines on the Management of Noxious Weeds and Non-Native Invasive Plant Species on National Roads (Revision 1)

Planning and Development Act, 2000, as amended 2017 (S.I. No. 20 of 2017)

Planning and Development Regulations 2001, S.I. No. 600 of 2001

Protection of the Environment Act 2003

The Birds Directive: Council Directive 2009/147/EC on the conservation of wild birds

The Birds Directive: Council Directive of 2 April 1979 on the conservation of wild birds (79/409/EEC)

The European Communities (Birds and Natural Habitats) Regulations, 2011 (S.I. 477 of 2011), as amended, 2015 (S.I. No. 355 of 2015)

The Fisheries (Consolidation) Acts 1959 & 2001

The Forestry Act, 1946, S.I. No. 13 of 1946, as amended, 2009 (S.I. No. 40 of 2009) & Forestry Act, 2014, S.I. No. 31 of 2014

The Habitats Directive: Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora

The National Monuments Act 1930, S.I. No. 2 of 1930, as amended, 2004 (S.I. No. 22 of 2004)

The Salmonid Regulations 1988, S.I. No. 293 of 1988

The Water Pollution Acts of 1977 & 1990

The Wildlife Act 1976 & Wildlife (Amendment) Act, 2000

Waste Framework Directive 2008/98/EC of the European Parliament and Council on waste

Waste Management (Collection Permit) Regulations 2007, S.I. No. 821 of 2007), as amended, 2015 (S.I. No. 197 of 2015), 2016 (S.I. No. 24 of 2016)

Waste Management (Facility Permit and Registration) Regulations 2007, S.I. No. 821 of 2007, as amended, 2008 (S.I. No. 86 of 2008), 2015 (S.I. No. 198 of 2015)

Waste Management (Food Waste) Regulations 2009, S.I. No 508 of 2009, as amended, 2015 (S.I. No. 430 of 2015)

Waste Management (Hazardous Waste) Regulations, 1998, as amended, 2000 (S.I. No. 73 of 2000)

Waste Management (Landfill Levy) Regulations 2008, S.I. No. 199 of 2008, as amended 2009, (S.I. No. 550 of 2009), 2010 (S.I. No. 31 of 2010), 2012 (S.I. No. 221 of 2012), 2013 (S.I. No. 194 of 2013), 2015 (S.I. No. 189 of 2015)

Waste Management (Miscellaneous Provisions) Regulations, 1998, S.I. No. 164 of 1998

Waste Management (Prohibition of Material Disposal by burning) Regulations 2009, S.I No. 286 of 2009, as amended, 2015 (S.I. No. 538 of 2015)

Waste Management (Registration of Brokers and Dealers) Regulations 2008, SI No. 113 of 2008

Waste Management (Tyres and Waste Tyres) Regulations 2007, as amended, 2017 (S.I. No. 400 of 2017)

Waste Management Act of 1996, 2001 and 2003

Waste Management Shipment of Waste Regulations 2007, S.I. No. 419 of 2007

Water Conservation Regulations 2008, S.I. No. 527 of 2008

Water Framework Directive (WFD): Directive 2000/60/EC of the European Parliament and Council establishing a framework for Community Action in the field of water policy, as amended

Water Policy Regulations 2003, S.I. No. 722 of 2003, as amended, 2005 (S.I No. 413 of 2005), 2008 (S.I No. 219 of 2008), 2010 (S.I. No. 93 of 2010) and Amendment (No. 2) Regulations, (S.I. 326 of 2010) & EU Water Policy Regulations 2014 (S.I 350 of 2014)

Limerick Development Plan 2022-2028;

Wildlife Act, 1976 (Protection of Wild Animals) Regulations, 1990, S.I. No. 112 of 1990 and Wildlife Amendment Act, 2000 (S.I. No. 38 of 2000)

APPENDICES

Appendix A. Asbestos Report

A.1 ASBESTOS SURVEY REPORT (Phoenix Environmental Safety Ltd., 2024)

Phoenix Environmental Safety Ltd.

ASBESTOS SURVEY REPORT

(Refurbishment / Demolition Survey)

Client: Limerick Twenty Thirty Strategic Development DAC, Gardens International, Henry Street, Limerick

> Location: The Cleeves Site, North Circular Road, Limerick

Date: 12th November 2024

Report No. PE24-1226

Graigueswood, Freshford, Co. Kilkenny

Tel: 056 8832414 Fax: 056 8832950 admin@phoenixenv.ie www.phoenixenv.ie

Client Name: Limerick Twenty Thirty Strategic Development DAC, Gardens International, Henry Street, Limerick

Property: The Cleeves Site, North Circular Road, Limerick

Asbestos Survey Type: Refurbishment/Demolition Asbestos Survey

Survey Company: Phoenix Environmental Safety Ltd.

Surveyors: Eoghan Hickey, Andrew Hickey & John Tonkies

Testing Laboratory: G & L Consultancy Limited

Date of Survey: 6th November 2024

Date of Survey Report: 12th November 2024

Report issue: Final

Signed: Date: 12th November 2024

This report cannot be used for contractual or engineering purposes unless this sheet is signed where indicated by Surveyor. The report must also be designated 'final' on the signatory sheet.

Please note that Phoenix Environmental Safety Ltd. cannot be held responsible for the way in which the Client interprets or acts upon the results. The report must be read in its entirety including any appendices. Phoenix Environmental Safety Ltd. accepts no responsibility for sub-division of this report. All measurements in this report are approximate and therefore should not be used by the asbestos removal contractor for pricing purposes. The asbestos removal contractors should ascertain for themselves, by site measurements and inspection, the exact nature and extent of the work to be done.

The survey information should be used to help in the tendering process for removal of ACMs from the building before work starts. The survey report should be supplied by the client to designers and contractors who may be bidding for the work, so that the asbestos risks can be addressed. In this type of survey, where the asbestos is identified so that it can be removed (rather than to manage it), the survey does not normally assess the condition of the asbestos, other than to indicate areas of damage or where additional asbestos debris may be present. However, where the asbestos removal may not take place for some time, the ACMs' condition will need to be assessed and the materials managed.

TABLE OF CONTENTS	PAGE
Cover sheet	1
Signatory Sheet	2
Table of Contents	3
Summary	4-6
Introduction	7-8
Appendix A (Asbestos materials in buildings)	9-10
Appendix B (Results of Laboratory Analysis)	11-16
Appendix C (Asbestos Data Sheets)	17-60
Appendix D (Non asbestos containing materials)	61-67
Appendix E (Non-accessible locations)	68
Appendix F (Floor plans & location of asbestos containing materials)	69-73

SUMMARY

Following a request made by Limerick Twenty Thirty Strategic Development DAC, we have produced this Refurbishment/Demolition Asbestos Survey report for the Cleeves Site, North Circular Road, Limerick with the aim of finding asbestos containing materials (ACMs) within the scope of the asbestos survey.

The scope of the asbestos survey was confined to all accessible areas of The Cleeves Site which is due for refurbishment and demolition works in the near future. The buildings within the scope of the asbestos survey are outlined in Appendix F.

During the asbestos survey at the former Cleeves Site in Limerick, the following asbestos containing materials were detected in the following locations:

BUILDING 1

• Corrugated asbestos cement sheeting was identified on the roof of the buildings (90 m² total approx. floor area) and associated cement debris was identified internally and externally

BUILDING 2

• Asbestos insulation board was identified on the ceiling. The upper floors in Building 2 were inaccessible to assess the quantity of the material

BUILDING 3

Corrugated asbestos cement sheeting was identified on the roof and sides of the building (720 m² approx. floor area) and associated cement debris was identified internally and externally

BUILDING 4

- Asbestos cement slates were identified on the roof area (600 m² approx. floor area)
- Asbestos rope was identified on the wiring of the electrics in the lift motor room
- Asbestos cement and insulation board debris was identified in the attic area
- Asbestos thermal insulation was identified within the boiler unit on the 3rd floor
- Asbestos thermal insulation was identified on the high-level pipework on the ground floor leading to the boiler room at the rear of the building (23 linear meters approx.)

BUILDING 5

 Corrugated asbestos cement sheeting was identified on the roof of the building (270 m² approx. floor area)

BUILDING 6

No asbestos detected

BUILDING 7

Corrugated asbestos cement sheeting was identified on a section of the roof (160 m² approx. floor area)

BUILDING 8

No asbestos detected

...continued

SUMMARY CONTINUED

BUILDING 9

- Corrugated asbestos cement sheeting was identified on the main roof (305 m² approx. floor area)
- Asbestos cement slates were identified on the side roof and on the rear porch area (70 m² approx. floor area)
- Asbestos containing paper was identified under marmoleum floor covering in the main office area (150 m² approx.)
- Asbestos containing floor tiles were identified in the office and lobby areas between building 9 & 8 (150 m² approx.)

BUILDING 10

- Asbestos felt was identified on the main roof of the building (700 m² approx. floor area)
- Asbestos cement board, floor tiles and bitumen adhesive (10 m² approx.) was identified in the storeroom during a previous survey. The area was locked during this survey and should be presumed to still remain in this location.
- Millboard panels were identified over two high-level heaters and on one timber truss in the centre of the building
- Asbestos containing floor tiles and adhesive was identified on the floors in the storeroom (20 m² approx.)

BUILDING 11 – BOILER HOUSE

- Asbestos rope seals were identified on the redundant boiler flue
- Asbestos thermal insulation residue was identified on the walls, older pipework, older boiler unit and former calorifier

BUILDING 12

- Corrugated asbestos cement sheeting was identified on the roof of the building (650 m² approx. floor area)
- Asbestos insulation board tiles were identified on the ceilings in several locations (440 m² approx.)
- Asbestos containing floor tiles and adhesive were identified on the floors in the ground floor storeroom (10 m² approx.)

BUILDING 13

Asbestos containing floor tiles were identified on the floors in the ground floor office (20 m² approx.)

BUILDING 14

- Corrugated asbestos cement sheeting was identified on the roof of the building (900 m² approx. floor area)
- Corrugated asbestos cement sheeting was identified on the lean-to roof at the rear of Building 14 (175 m² approx. floor area)
- Asbestos insulation board was presumed on the high-level divide between building 13&14. (5 linear meters approx.) access was not available to this board because of its height and the volume of material stored in the area

BUILDING 15

 Corrugated asbestos cement sheeting was identified on the roof of the building (565 m² approx. floor area)

...continued

SUMMARY CONTINUED

BUILDING 16

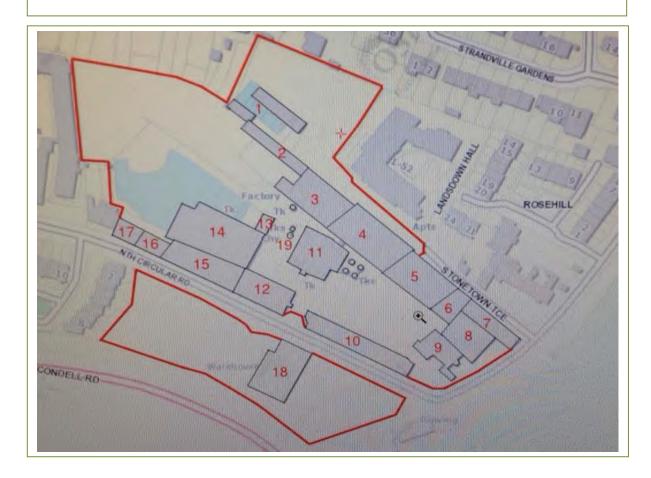
- Corrugated asbestos cement sheeting was identified on the roof of the building (165 m² approx. floor area)
- Asbestos containing floor tiles and bitumen adhesive were identified in the rear entrance area (40 m² approx.)

BUILDING 17

Asbestos cement slates were identified on the rear pitch of the roof (50 m² approx. floor area)

BUILDING 18

No asbestos detected


BUILDING 19 – CHIMNEY

No asbestos detected

Throughout Site

- CAF gaskets were identified between the older pipework flanges
- Rope seals were identified on the doors of the older electrical equipment
- Asbestos cement debris and rainwater goods can be found internally and externally throughout the site

See Appendix C & F for more details

INTRODUCTION

Background

Asbestos has been used extensively in the building industry for over one hundred years and has proved to be an excellent product for a variety of uses, having many qualities such as insulation, fire and chemical resistance to name a few. Its suitability across a wide range of uses and its relatively cheap cost made it very popular, with over 3,000 different asbestos products having been recorded.

The use of asbestos containing materials (ACM's) was most prevalent between the 1950's and 1970's when it provided an economic, easy to use and versatile material. Unfortunately, given the constitution and make up of asbestos it can give rise to microscopic airborne fibres being released into the working environment. The fibres have carcinogenic properties caused by inhalation of the fibres which can get lodged in the lining of the lungs causing disease and death.

Scope & Purpose

Limerick Twenty Thirty Strategic Development DAC has commissioned Phoenix Environmental Safety Ltd. to undertake an asbestos survey at the Cleeves Site, North Circular Road, Limerick. The aim of the survey was to locate and identify the presence of asbestos containing materials (ACM's) or suspected ACM's. This report provides a record and assessment of the extent and characteristics of ACM's and is based on information made available on the 6th November 2024.

This particular survey comprised of a Refurbishment / Demolition Survey, carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006, the Health and Safety Executive's (UK) guidance document HSG 264 (Asbestos: The Survey Guide) and HSG 227 (A Comprehensive Guide to managing Asbestos in Premises).

This means that:

- As far as reasonably practicable, locate and describe all ACM's in all reasonably accessible areas within the scope of the survey
- A sampling programme is undertaken to identify possible ACM's and estimates of the volumes and the surface areas of ACM made
- A record of the condition of the ACM's or where additional asbestos debris may be expected to be present is produced

Refurbishment / Demolition Surveys (formerly type 3 surveys)

This type of survey is necessary prior to any refurbishment (including "minor") or demolition work being carried out. These "refurbishment / demolition" surveys will be much more intrusive and destructive compared with management surveys as their intention is to locate all the ACMs so that they can be removed before the refurbishment or demolition takes place. Refurbishment/demolition surveys are required as necessary when the needs or use of the building changes and the fabric of the building will be disturbed or complex fixed plant and equipment are to be dismantled.

The purpose of the report is to:

- Enable the client to take appropriate precautions so that people who work at the Cleeves Site
 during the forthcoming refurbishment/demolition works are not exposed to asbestos-related health
 risks
- Provide information to assist the client in developing and implementing an action plan before any
 refurbishment works or demolition is carried out

Presentation of Findings

Data Sheets

A series of data sheets have been prepared to provide assessments and recommendations for each of the locations where samples were taken. These data sheets are presented in Appendix C.

Figures

The schematic diagrams presented in Appendix F at the rear of this document shows the locations of all of the asbestos containing materials detected during the asbestos survey.

Caveats

All reasonable steps have been taken to ensure that the contents and findings of this report are true and accurate. Though as stated below, further undetected ACM's may still be present within the premises. The client should therefore be aware of his responsibilities for identifying, locating, removing and/or managing all ACM's within the premises, and for notifying the appropriate authorities where necessary.

Refurbishment / Demolition Surveys

This type of survey employs the use of destructive sampling techniques of an unfamiliar site. Although every effort is made to locate all asbestos containing materials, it is impossible to rule out the possibility that undiscovered asbestos materials may be present. If the building is to undergo major refurbishment or demolition, it is recommended that the persons carrying out the work are made aware of this and take sufficient precautions, as may be appropriate, to ensure the health and safety of their own employees and any other parties who may be affected by the works.

APPENDIX A

ASBESTOS MATERIALS IN BUILDINGS

Sprayed coatings applied in Ireland were typically a mixture of hydrated asbestos cement containing up to 85% asbestos, mainly amosite but crocidolite and mixtures have been used. Primarily used for anti-condensation and acoustic control and fire protection to structural steelwork. It is a friable material but if in a good condition and unlikely to be disturbed presents no immediate danger; however it is likely to release fibres, if disturbed especially during repair and maintenance work. As it ages the binding medium of sprayed asbestos may degrade with the consequent release of more fibres.

Thermal insulation to boilers, vessels, pipe work, valves, pumps etc also known as hand applied lagging. Lagging may have a protective covering of cloth, tape, paper, metal or a surface coating of cement. All types of asbestos may be found in lagging and the content can vary between 15 and 85% asbestos with the protective papers being up to 100% chrysotile. The likelihood of fibre release depends upon its composition, friability and state of repair, but it is particularly susceptible to damage and disturbance through maintenance work or the action of water leaks.

Asbestos insulating boards usually contain between 15 to 40% amosite, although boards may be found to contain other types of asbestos and in other quantities. Insulating boards were developed in the 1950s to provide an economical, lightweight, fire resisting insulating material. As insulation board is semi-compressed it is more likely to release fibres as a result of damage or abrasion. Work on asbestos insulation board can give rise to high levels of asbestos fibre.

Asbestos cement products as in roofing slates, wall cladding, permanent shuttering, flue, rain water and vent pipes generally contain 10 to 15% of asbestos fibre bounded in Portland cement, some flexible boards contain a small proportion of cellulose. All three types of asbestos have been used in the manufacture of asbestos cement. The asbestos fibres in asbestos cement are usually firmly bound in the cement matrix and will be released only if the material is mechanically damaged or as it deteriorates with age.

Ropes and yarns are usually high in asbestos content, approaching 100% and all three types of asbestos have been used in their manufacture. They were used as in the pipe lagging process and in pipe jointing and also for packing materials as in heat/fire resistant boiler, oven and flue sealing or anywhere thermal of fire protection was required. The risk of fibre release depends upon the structure of the material; bonded gasket material is unlikely to release asbestos but an unbonded woven material may give rise to high fibre release especially if when damaged or frayed.

Cloth thermal insulation and lagging, including fire resistant blankets, mattresses and protective curtains, gloves, aprons, overalls etc. All types of asbestos have been used in the manufacture but since the mid 60's the majority has been chrysotile, the content of which can be up to 100 %.

Millboard, paper and CAF gaskets usually have an asbestos content approaching 100% with all three types of asbestos being used in their manufacture. They were used for insulation of electrical equipment and for thermal insulation. Asbestos paper has been used as a laminate for fireproofing to various fibre panels. These materials are on some occasions not well bonded and will release asbestos fibres if subject to abrasion and wear.

Bitumen felts and coatings may contain asbestos either bound in the bitumen matrix or as an asbestos paper liner. These materials are not likely to present a hazard during normal installation or use, but should be removed and disposed of in compliance with any regulation applicable.

Thermoplastic floor tiles can contain up to 25% asbestos usually chrysotile, PVC vinyl floor tiles and unbacked PVC flooring normally 7-10% chrysotile and asbestos paper backed PVC flooring the paper backing may contain up to 100% chrysotile. Fibre release is not normally an issue but may occur when the material is cut or subjected to abrasion.

Textured coatings. Decorative coatings on walls and ceilings usually contain 3-5% chrysotile. Fibre release may occur when subjected to abrasion.

Mastics, **sealants**, **putties and floor tile adhesives** may contain small amounts of asbestos. The only possible risk is from sanding of hardened material when appropriate precautions should be taken.

Reinforced plastic and resin composites, used for toilet cisterns, seats, banisters, stair nosings, window seals, lab bench tops, brake shoes and clutches in machines. The plastics usually contain 1-10% chrysotile and were used in for example car batteries to improve the acid resistance. Resins may contain between 20 and 50% amosite, but because of its composition fibre release is likely to be low.

ASBESTOS FIBRE TYPE COMMON NAMES		
Chrysotile White Asbestos		
Amosite	Brown Asbestos	
Crocidolite	Blue Asbestos	
Fibrous Actinolite	N/A	
Fibrous Anthophyllite	N/A	
Fibrous Tremolite	N/A	

Chrysotile

Amosite

Crocidolite

Tremolite

Actinolite

Anthophyllite

APPENDIX B RESULTS OF LABORATORY ANALYSIS

BULK MATERIAL SAMPLE REPORT

J687505 Client Order No: N/A Reference No:

Date Received: 7 Nov 2024

Phoenix Environmental Safety Ltd (IE), Graigueswood, Freshford, Co. Kilkenny, Ireland . Client Name and Address:

Aldate

Site Address: Cleeves Site, North Circular Road, Limerick

Sampling Officer: Phoenix Environmental Safety Ltd (IE)

Date of Analysis: 7 Nov 2024

Andy Webster

Colin Webb David McNaugher Analyst:

Jamie Fearon Justin Proctor

Approving Officer: Andy Webster Signed:

Issue Date: 8 Nov 2024

ANALYSIS RESULTS

Sampling carried out by our own officers follows the procedures documented in our internal method M3: The Sampling of Bulk Materials, for Analysis to Determine the Presence of Asbestos. These samples have been analysed in accordance with internal method M2: The Identification of Asbestos, within Bulk Materials, by the Use of Optical Microscopy. Both these internal methods are based on the standard method as outlined in the HSE Document HSG248 'Asbestos: The Analysts' Guide. Any deviations from these standard methods will be recorded in this report. No responsibility is taken for sampling that is not carried out by own officers. Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation. Any comments regarding percentage content is outside the scope of our UKAS accreditation. The material classification is the opinion of the analyst, based on the samples' appearance, as received, and may not accurately reflect the source material on site. Where 'Trace Asbestos' has been reported, only 1 or 2 fibres or fibre bundles have been identified and analysed as asbestos following a thorough examination of the sample. All samples are analysed at one of our UKAS accredited laboratories in Somerset or Northern Ireland. This report must not be reproduced, except in full, without the written permission of the laboratory. These samples will be retained within this laboratory for a period of six months prior to disposal at a licensed asbestos disposal site, unless the client makes alternative arrangements. Reports will be retained for a minimum of five years following the date of issue. For advice concerning these materials, risk assessments, removal procedures or information regarding the current legislation for work with asbestos containing materials, please contact G&L Consultancy Ltd.

Site Ref	Lab Ref	Description	Analysis Result	Classification
S1	BS222500	Building 1 - Pumphouse - Flange - Gasket	No Asbestos Detected	Not Applicable
S2	BS222501	Building 1 - Lean-to Roof - Cement sheeting	Chrysotile	Asbestos Cement
S3	BS222502	Building 2 - Flange - Gasket	No Asbestos Detected	Not Applicable
S4	BS222503	Building 2 - Electrical board - Backing board on floor	No Asbestos Detected	Not Applicable

G&L Consultancy Ltd

Template.14.11.23.93.JL

54A Huntly Road, Banbridge, Co. Down, Northern Ireland, BT32 3UA Tel: 028 4062 3566 Email: ni@gnl.org.uk Web: www.gnl.org.uk

Company Directors: Mrs J Lewis and Mr P Lewis. VAT Registration Number 729 1092 34 Registered Office: Unit 5A, Castle Road, Chelston Business Park, Wellington, Somerset, TA21 9JQ G&L Consultancy Ltd is a company registered in England and Wales with a Company Number: 3687929

Page 1 of 5

J687505 Version 1

BULK MATERIAL SAMPLE REPORT (CONTINUATION)

Site Ref	Lab Ref	Description	Analysis Result	Classification
S5	BS222504	Building 2 - Ground floor - Ceiling - Insulation board	Chrysotile + Amosite	Asbestos Insulating Board
S6	BS222505	Builidng 2 - Switch room - Fuse box panel	No Asbestos Detected	Not Applicable
S 7	BS222506	Building 2 - Electrical switch room - Spark arrestor	No Asbestos Detected	Not Applicable
S8	BS222507	Building 3 - Cement debris on ground	Chrysotile	Asbestos Cement
S9	BS222508	Building 3 - Rear of building - Cement gutter	Chrysotile	Asbestos Cement
S10	BS222509	Building 3 - Rear of building - Cement downpipe	Chrysotile + Amosite	Asbestos Cement
S11	BS222510	Building 4 - Tank room - Tank - Rope	No Asbestos Detected	Not Applicable
S12	BS222511	Building 4 - Tank room - Electrical box - Rope on wiring	Chrysotile	Asbestos Textiles/Paper
S13	BS222512	Builidng 4 - Roof - Felt	No Asbestos Detected	Not Applicable
S14	BS222513	Builidng 4 - Roof - Cement slate	Chrysotile	Asbestos Cement
S15	BS222514	Building 4 - Lift motor room - Side of LMR - Insulation board debris	Chrysotile + Amosite	Asbestos Insulating Board
S16	BS222515	Building 4 - Side of lift motor room - Cement debris	Chrysotile + Crocidolite	Asbestos Cement
S17	BS222516	Building 4 - 3rd Floor - Flange - Gasket	Chrysotile	Asbestos Textiles/Paper
S18	BS222517	Building 4 - 3rd Floor - Flange on pipe work - Rope	No Asbestos Detected	Not Applicable
S19	BS222518	Builidng 4 - 3rd Floor - Boiler unit - Insulation	Chrysotile	Asbestos Insulation/Coating
S20	BS222519	Building 4 - 2nd Floor - Electrical box - Door - Rope	Chrysotile	Asbestos Textiles/Paper

BULK MATERIAL SAMPLE REPORT (CONTINUATION)

Site Ref	Lab Ref	Description	Analysis Result	Classification
S21	BS222520	Building 4 - 1st Floor area - Felt	Chrysotile	Unknown
S22	BS222521	Building 4 - Ground floor - High level pipe - Insulation	Amosite	Asbestos Insulation/Coating
S23	BS222522	Building 4 - Rear area externally - Cement debris	Chrysotile	Asbestos Cement
S24	BS222523	Building 5/4 - High level pipe work at door - Insulation (white)	No Asbestos Detected	Not Applicable
S25	BS222524	Buildig 5 - Rear roof - Cement sheeting	Chrysotile + Amosite	Asbestos Cement
S26	BS222525	Building 5 - 1st floor electrical equipment - Door - Rope	Chrysotile	Asbestos Textiles/Paper
S27	BS222526	Building 6/8 - Pipe work - Insulation (pink)	No Asbestos Detected	Not Applicable
S28	BS222527	Builidng 7 - Roof - Cement sheeting	Chrysotile + Amosite	Asbestos Cement
S29	BS222528	Building 9 - Cement area - Roof - Cement sheeting	Chrysotile	Asbestos Cement
S30	BS222529	Builidng 9 - Front section - Roof - Cement slate	Chrysotile + Crocidolite	Asbestos Cement
S31	BS222530	Building 9 - External - Cement downpipe	Chrysotile + Crocidolite	Asbestos Cement
S32	BS222531	Building 9 - Attic - Vessel - Coating / insualtion	No Asbestos Detected	Not Applicable
S33	BS222532	Building 9 - Front area - Compound & adhesive	No Asbestos Detected	Not Applicable
S34	BS222533	Building 9 - Cemented area - Under marmoleum - Paper	Chrysotile	Asbestos Textiles/Paper
S35	BS222534	Building 9 - Lobby to Builidng 8 - Floor tile	Chrysotile	Reinforced Composite
S36	BS222535	Builidng 10 - Roof - Felt	Chrysotile	Well Bound Material

Template.14.11.23.93.JL Page 3 of 5 J687505 Version 1

BULK MATERIAL SAMPLE REPORT (CONTINUATION)

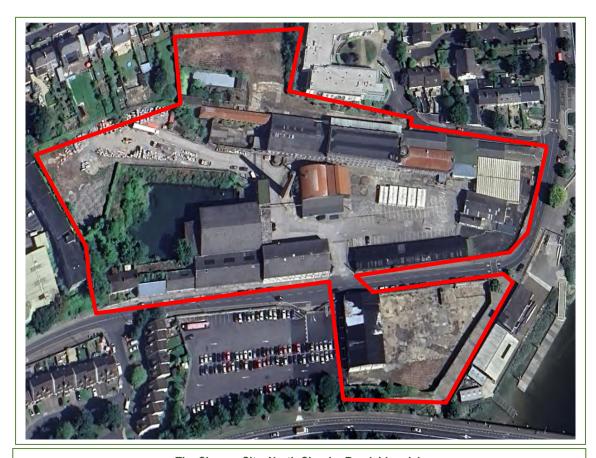
Site Ref	Lab Ref	Description	Analysis Result	Classification
S37	BS222536	Building 10 - End store - Floor tile & adhesive	Chrysotile	Reinforced Composite + Well Bound Material
S38	BS222537	Building 10 - Warehouse - Over heater - Millboard	Chrysotile	Asbestos Insulating Board
S39	BS222538	Building 10 - Security area - Floor compound & adhesvie	No Asbestos Detected	Not Applicable
S40	BS222539	Building 11 - Flue pipe - Rope	Chrysotile	Asbestos Textiles/Paper
S41	BS222540	Building 11 - Electrical wiring covering - Textile	Amosite	Unknown
S42	BS222541	Building 11 - Boiler room - Wall - Insulation debris	Amosite	Asbestos Insulation/Coating
S43	BS222542	Building 11 - Boiler house - Flange - Gasket	Chrysotile	Asbestos Textiles/Paper
S44	BS222543	Building 11 - Boiler house - Tank - Insulation debris	Amosite	Asbestos Insulation/Coating
S45	BS222544	Builidng 11 - Boiler house - Tank - Bitumen pad	Amosite	Unknown
S46	BS222545	Building 12 - Roof - Cement sheeting	Chrysotile + Crocidolite	Asbestos Cement
S47	BS222546	Builidng 12 - Ceiling tile - Insulation board	Chrysotile + Amosite	Asbestos Insulating Board
S48	BS222547	Building 12 - 1st floor - Stairs - Insulation board	Chrysotile + Amosite	Asbestos Insulating Board
S49	BS222548	Building 12 - Ground floor warehose - Over column - Insulation board	Amosite + Chrysotile + Crocidolite	Asbestos Insulating Board
S50	BS222549	Builidng 12 - Store room - Floor tile & adhesive	Chrysotile	Reinforced Composite + Well Bound Material
S51	BS222550	Building 13 - Front store - Floor tile & adhesive	Chrysotile	Reinforced Composite
S52	BS222551	Builidng 14 - Roof - Cement sheeting	Chrysotile	Asbestos Cement

BULK MATERIAL SAMPLE REPORT (CONTINUATION)

Site Ref	Lab Ref	Description	Analysis Result	Classification
S53	BS222552	Buillidng 14 - Rear lean-to roof - Cement sheeting	Chrysotile + Crocidolite	Asbestos Cement
S54	BS222553	Building 15 - Roof - Cement sheeting	Chrysotile	Asbestos Cement
S55	BS222554	Buillidng 15 - External downpipe - Cement downpipe	Chrysotile	Asbestos Cement
S56	BS222555	Buillidng 16 - Roof - Cement sheeting	Chrysotile + Crocidolite	Asbestos Cement
S57	BS222556	Building 16 - Rear entrance - Floor tile & adhesive	Chrysotile	Reinforced Composite + Well Bound Material
S58	BS222557	Building 17 - Rear lean-to - Debris - Felt	No Asbestos Detected	Not Applicable
S59	BS222558	Buillidng 17 - Roof - Cement slate	Chrysotile + Crocidolite	Asbestos Cement
S60	BS222559	Building 17 - Rear of builidng - Debris - Cement	Chrysotile	Asbestos Cement
S61	BS222560	Builidng 18 - Roof - Felt	No Asbestos Detected	Not Applicable

BS222520 - Chrysotile fibres found adhered to sample surface. Not enough material around fibres for classification. Felt

matrix is negative.


BS222540 - Loose bundles of Amosite fibres found adhered to surface of the textile material, no asbestos was found within the matrix of the sample.

BS222544 - Loose Amosite found adhered on surface of bitumen, no asbestos was detected within the matrix of the

sample. **BS222547** - Board appears quite soft and friable.

APPENDIX C

ASBESTOS DATA SHEETS

The Cleeves Site, North Circular Road, Limerick

ASBESTOS DATA SHEET

Created By

Eoghan Hickey

Date

12th November 2024

Site Details

The Cleeves Site. North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 1 Roof areas

Location

Extent/ 90 m2 total approx.

Amount

Survey Date

6.11.2024

Sample No.

PRIORITY ASSESSMENT

BS 222501

Survey Company

Testing Laboratory.

TOTAL SCORE: N/A

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type Cement sheeting Extent of damage Damaged Surface treatment Cement Chrysotile Asbestos type Material assessment score: N/A

Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A N/A N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The corrugated asbestos cement sheeting identified on the roof areas in Building 1 contains Chrysotile (white) asbestos fibres and associated cement debris was identified internally and externally. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement sheeting should be removed by an asbestos removal contactor and disposed of as asbestos waste before the demolition works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 2

Location

Extent/ **Amount**

Ceiling

Not quantified

Survey Date

6.11.2024

Sample No.

BS 222504

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type Insulation board

Extent of damage

Surface treatment

Asbestos type

High Unsealed Chrysotile & Amosite

Material assessment score: N/A

Normal occupant activity

Likelihood of disturbance

Human exposure potential

Maintenance activity

TOTAL SCORE: N/A

PRIORITY ASSESSMENT

N/A

N/A

N/A

N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The insulation board identified on the ceiling in Building 2 contains Chrysotile (white) and Amosite (brown) asbestos fibres. Asbestos insulations boards usually contain between 15-45% asbestos fibres.

The asbestos insulation board (AIB) should be removed under controlled conditions by a specialist asbestos removal contractor and disposed of as asbestos waste before the demolition works commence. The upper floors in Building 2 were inaccessible to assess the quantity of the material

Carrying out removal works with asbestos insulation board will require 14 days notification to the HSA

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site. North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 3

Location

Extent/ **Amount**

Roof & sides of building

720 m² approx.

Survey Date

6.11.2024

Sample No.

PRIORITY ASSESSMENT

BS 222507

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

N/A

N/A

MATERIAL ASSESSMENT Product type Cement sheeting Extent of damage High Surface treatment Cement Chrysotile Asbestos type Material assessment score: N/A

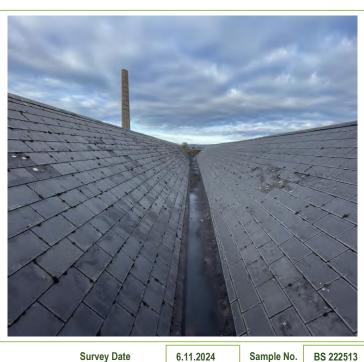
Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A


The corrugated asbestos cement sheeting identified on the roof and sides of building 3 contains Chrysotile (white) asbestos fibres. Asbestos cement debris was identified internally and externally. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement sheeting and associated debris should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Sample No.

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

BS 222513

	MATERIAL ASSESSMENT		PRIORITY ASSESSMENT
Product type	Cement slates	Normal occupant activity	N/A
Extent of damage	Low	Likelihood of disturbance	N/A
Surface treatment	Cement	Human exposure potential	N/A
Asbestos type	Chrysotile	Maintenance activity	N/A
	Material assessment score: N/A	TOTAL SCORE: N/A	Priority assessment score: N/A

Survey Date

Survey Company

Testing Laboratory.

CONCLUSIONS AND RECOMMENDATIONS

The cement slates identified on the roof of Building 4 contains Chrysotile (white) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement slates should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 4

Lift motor room

Location

Amount

Extent/ Electrics

Survey Date

6.11.2024

Sample No.

PRIORITY ASSESSMENT

BS 222511

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type Rope Extent of damage Low Surface treatment **Textile** Chrysotile Asbestos type Material assessment score: N/A

Normal occupant activity N/A Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The rope identified on the wiring of the electrics in the lift motor room contains Chrysotile (white) asbestos fibres. Rope seals can contain up to 100% asbestos fibres

The rope should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Beside lift motor room

Site Ref

PE 24-1226

Building Ref.

Building 4

Attic

Location

Extent/

Amount

Survey Date

6.11.2024

BS 222515

Sample No.

PRIORITY ASSESSMENT

Phoenix Environmental Safety Ltd.

Testing Laboratory.

TOTAL SCORE: N/A

Survey Company

G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type Cement & Insulation board debris Extent of damage Medium Surface treatment Unsealed Chrysotile & Amosite & Crocidolite Asbestos type Material assessment score: N/A

Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A N/A N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The cement and insulation board debris identified in the attic area beside the lift motor room in Building 4 contains Chrysotile (white), Amosite (brown) and Crocidolite (blue) asbestos fibres. Asbestos insulations boards usually contain between 15-45% asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres

The cement and insulation board debris should be removed under controlled conditions by a specialist asbestos removal contractor and disposed of as asbestos waste before the demolition works commence.

Carrying out removal works with asbestos insulation board will require 14 days notification to the HSA

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 4

Location

Extent/ **Amount**

3rd floor

Boiler unit

Survey Date

6.11.2024

Sample No.

BS 222518

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type Thermal insulation Extent of damage Low Surface treatment Sealed Chrysotile Asbestos type Material assessment score: N/A

Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A

N/A

N/A

Priority assessment score: N/A

PRIORITY ASSESSMENT

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The thermal insulation identified around the sections of the boiler unit on the 3rd floor contains Chrysotile (white) asbestos fibres. Thermal insulation can contain between 15-85% asbestos fibres

The thermal insulation should be removed under controlled conditions by a specialist asbestos removal contractor and disposed of as asbestos waste before the demolition works commence.

Carrying out removal works with asbestos containing thermal insulation will require 14 days notification to the HSA

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Date

12th November 2024

Site Details

The Cleeves Site. North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 4

Location

Extent/ **Amount** Ground floor

23 linear meters approx.

Survey Date

6.11.2024

Sample No.

BS 222521

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type Thermal insulation Extent of damage Medium Surface treatment Within metal casing Amosite Asbestos type Material assessment score: N/A

Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A N/A N/A

Priority assessment score: N/A

PRIORITY ASSESSMENT

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The thermal insulation identified on the high-level pipework on the ground floor contains Amosite (brown) asbestos fibres. Thermal insulation can contain between 15-85% asbestos fibres.

The thermal insulation should be removed under controlled conditions by a specialist asbestos removal contractor and disposed of as asbestos waste before the demolition works commence.

Carrying out removal works with asbestos containing thermal insulation will require 14 days notification to the

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 5

Location

Extent/ Amount 24-1220

Roof

270 m² approx. floor area

Survey Date

6.11.2024

Sample No.

BS 222524

Survey Company

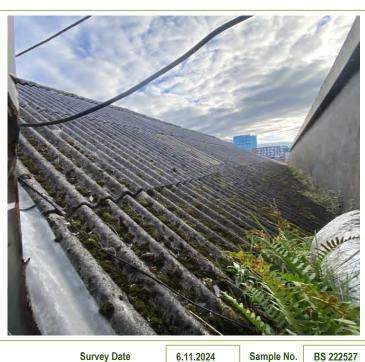
Phoenix Environmental Safety Ltd.

Testing Laboratory.

G & L Consultancy Ltd.

	MATERIAL ASSESSMENT		PRIORITY ASSESSMENT
Product type	Cement sheeting	Normal occupant activity	N/A
Extent of damage	Weathered	Likelihood of disturbance	N/A
Surface treatment	None	Human exposure potential	N/A
Asbestos type	Chrysotile & Amosite	Maintenance activity	N/A
	Material assessment score: N/A	TOTAL SCORE: N/A	Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS


The corrugated asbestos cement sheeting identified on the roof of the building contains Chrysotile (white) and Amosite (brown) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement sheeting should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

	MATERIAL ASSESSMENT		PRIORITY ASSESSMENT
Product type	Cement sheeting	Normal occupant activity	N/A
Extent of damage	Weathered	Likelihood of disturbance	N/A
Surface treatment	None	Human exposure potential	N/A
Asbestos type	Chrysotile & Amosite	Maintenance activity	N/A
	Material assessment score: N/A	TOTAL SCORE: N/A	Priority assessment score: N/A

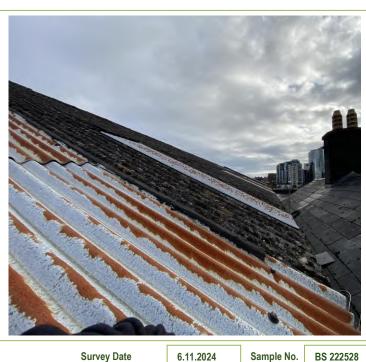
Survey Date

Survey Company

Testing Laboratory.

CONCLUSIONS AND RECOMMENDATIONS

The corrugated asbestos cement sheeting identified on a section of the roof contains Chrysotile (white) and Amosite (brown) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.


The cement sheeting should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Amount

Sample No.

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

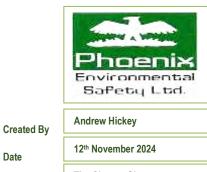
BS 222528

	MATERIAL ASSESSMENT		PRIORITY ASSESSMENT
Product type	Cement sheeting	Normal occupant activity	N/A
Extent of damage	Medium	Likelihood of disturbance	N/A
Surface treatment	None	Human exposure potential	N/A
Asbestos type	Chrysotile	Maintenance activity	N/A
	Material assessment score: N/A	TOTAL SCORE: N/A	Priority assessment score: N/A

Survey Date

Survey Company

Testing Laboratory.


CONCLUSIONS AND RECOMMENDATIONS

The corrugated asbestos cement sheeting identified on the main roof contains Chrysotile (white) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement sheeting should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

The Cleeves Site, Site Details North Circular Road, Limerick

Date

Limerick Twenty Thirty Client Name Strategic Development DAC

Survey Type R/D Asbestos Survey

PE 24-1226 Site Ref

Building Ref. **Building 9**

Location Side roof & rear porch area

Extent/ 70 m² approx. floor area Amount

Survey Date 6.11.2024 Sample No. BS 222529 **Survey Company** Phoenix Environmental Safety Ltd. Testing Laboratory. G & L Consultancy Ltd.

	MATERIAL ASSESSMENT		PRIORITY ASSESSMENT
Product type	Cement slates	Normal occupant activity	N/A
Extent of damage	Medium	Likelihood of disturbance	N/A
Surface treatment	None	Human exposure potential	N/A
Asbestos type	Chrysotile & Crocidolite	Maintenance activity	N/A
	Material assessment score: N/A	TOTAL SCORE: N/A	Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The cement slates identified on the side roof and on the rear porch area contain Chrysotile (white) and Crocidolite (blue) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement slates should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

FURTHER DETAIL OF THE ASBESTOS CEMENT SLATES

View of the slates on the rear porch roof

View of the side building which contains the asbestos cement slates

ASBESTOS DATA SHEET

Survey Date
Survey Company

Testing Laboratory.

6.11.2024 Sample No. BS 222533

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	Paper
Extent of damage	Medium
Surface treatment	Covered with Marmoleum
Asbestos type	Chrysotile
	Material assessment score: N/A

75 m² approx.

Extent/

Amount

PRIORITY ASSESSMENT

Normal occupant activity

Likelihood of disturbance

Human exposure potential

Maintenance activity

N/A

N/A

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The paper identified under marmoleum floor covering in the main office area contains Chrysotile (white) asbestos fibres. Asbestos paper can contain up to 100% asbestos fibres.

The paper should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence. The full extent of the paper will not be known until the Marmoleum floor covering is removed

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Office and lobby area

Site Ref

PE 24-1226

Building Ref.

Building 9

Location

50 m² approx.

Extent/ Amount

Survey Date

6.11.2024

Sample No.

BS 222534

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory.

G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type Floor tiles Extent of damage Medium Surface treatment Composite material Chrysotile Asbestos type Material assessment score: N/A

Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A N/A N/A Priority assessment score: N/A

PRIORITY ASSESSMENT

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The floor tiles identified in the office and lobby areas between building 9 & 8 contains Chrysotile (white) asbestos fibres. Thermoplastic floor tiles can contain up to 25% asbestos fibres.

The floor tiles should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Roof

Location

Extent/ Amount **Building 10**

700 m² approx. floor area

Survey Date

6.11.2024

Sample No.

BS 222535

Survey Company

Phoenix Environmental Safety Ltd.

N/A

N/A

Testing Laboratory.

G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type Extent of damage Low Well bound material Surface treatment Chrysotile Asbestos type Material assessment score: N/A

Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A

PRIORITY ASSESSMENT

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The felt identified on the main roof of the building contains Chrysotile (white) asbestos fibres. Felt products generally contain a small quantity of asbestos fibres mixed into the product matrix.

The felt should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 10

High level

Location

Extent/ Amount

Over 2 high heaters & on 1 timber truss

Survey Date

6.11.2024

Sample No.

BS 222537

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory.

G & L Consultancy Ltd.

MATERIAL ASSESSMENT Product type Millboard Extent of damage High Surface treatment None Chrysotile Asbestos type Material assessment score: N/A

PRIORITY ASSESSMENT Normal occupant activity N/A Likelihood of disturbance N/A N/A Human exposure potential

N/A

Maintenance activity

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The millboard panels identified over two high-level heaters and on one timber truss in the center of the building contain Chrysotile (white) asbestos fibres. Millboard can contain up to 100% asbestos fibres

The millboard panels should be removed under controlled conditions by a specialist asbestos removal contactor and disposed of as asbestos waste before the works commence. This work wll require a 14 day notification to the HSA prior to the work commencing

See Appendix F for more details

FURTHER DETAIL OF THE MILLBOARD PANELS

Closeup view of the remaining millboard on one of the panels over the heater

View of the other panel which was originally over a heater

FURTHER DETAIL OF THE MILLBOARD PANELS

Closeup view of the remaining millboard on the lower level of the truss

View of the remaining millboard on the higher level of the truss

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 10 Storeroom

20 m² approx.

Location

Extent/

Amount

Survey Date

6.11.2024

Sample No.

BS 222536

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory.

G & L Consultancy Ltd.

N/A

N/A

	MATERIAL ASSESSMENT
Product type	Floor tiles and bitumen adhesive
Extent of damage	Medium
Surface treatment	Composite & well bound material
Asbestos type	Chrysotile
	Material assessment score: N/A

Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A

PRIORITY ASSESSMENT

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The floor tiles and bitumen adhesive identified on the floors in the storeroom contains Chrysotile (white) asbestos fibres. Thermoplastic floor tiles can contain up to 25% asbestos fibres. Bitumen adhesive contains a small quantity of asbestos

The floor tiles and bitumen adhesive should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 11

Location

Extent/ Amount

Boiler room

Around flue pipe

Survey Date

6.11.2024

Sample No.

BS 222539

Survey Company

Testing Laboratory.

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	Rope seals
Extent of damage	High
Surface treatment	Unsealed
Asbestos type	Chrysotile
	Material assessment score: N/A

Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

PRIORITY ASSESSMENT N/A N/A N/A N/A Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The rope seals identified on the redundant flue pipe contains Chrysotile (white) asbestos fibres. Rope seals can contain up to 100% asbestos fibres

The rope seals should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Limerick Twenty Thirty **Client Name** Strategic Development DAC

Survey Type R/D Asbestos Survey

PE 24-1226

Throughout

Building Ref. **Building 11**

Date

Site Ref

Amount

Location Boiler room Extent/

Survey Date Survey Company Testing Laboratory. 6.11.2024 Sample No. BS 222541 Phoenix Environmental Safety Ltd. G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	Thermal insulation residue
Extent of damage	High
Surface treatment	Unsealed
Asbestos type	Amosite
	Material assessment score: N/A

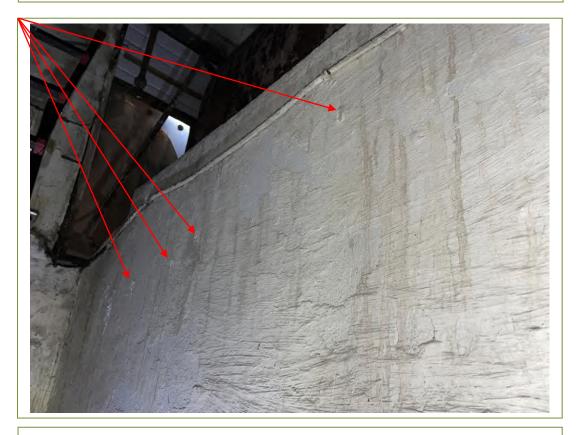
PRIORITY ASSESSMENT Normal occupant activity N/A Likelihood of disturbance N/A N/A Human exposure potential N/A Maintenance activity TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The thermal insulation residue identified on the walls, older pipework, older boiler unit and former calorifier in the boiler room in Building 11 contains Amosite (brown) asbestos fibres. Thermal insulation can contain between 15-85% asbestos fibres.

The thermal insulation should be removed under controlled conditions by a specialist asbestos removal contractor and disposed of as asbestos waste before the demolition works commence.


Carrying out removal works with asbestos containing thermal insulation will require 14 days notification to the HSA

See Appendix F for more details

DETAIL OF THE ASBESTOS CONTAINING THERMAL INSULATION RESIDUE

Asbestos containing thermal insulation residue on the boiler unit in the boiler room

Asbestos containing thermal insulation residue on the walls and pipework in the boiler room

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 12

650 m² approx.

Location

Extent/ Amount Roof

Survey Date

6.11.2024

Sample No.

PRIORITY ASSESSMENT

BS 222545

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory.

G & L Consultancy Ltd.

MATERIAL ASSESSMENT

Product type Cement sheeting

Extent of damage Medium

Surface treatment Cement

Asbestos type Chrysotile & Crocidolite

Material assessment score: N/A

Normal occupant activity

Likelihood of disturbance

N/A

Human exposure potential

Maintenance activity

N/A

N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The corrugated asbestos cement sheeting identified on the roof of the building 12 contains Chrysotile (white) and Crocidolite (blue) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement sheeting should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 12

Location

Extent/ **Amount**

Product type

Asbestos type

Ceiling

440 m² approx.

Survey Date

6.11.2024

Sample No.

BS 222546

Survey Company

Testing Laboratory.

G & L Consultancy Ltd.

Phoenix Environmental Safety Ltd.

MATERIAL ASSESSMENT Insulation board Extent of damage Medium Surface treatment Composite & well bound material

Material assessment score: N/A

Chrysotile & Amosite

Normal occupant activity Likelihood of disturbance Human exposure potential

Maintenance activity

TOTAL SCORE: N/A

PRIORITY ASSESSMENT

N/A

N/A

N/A

N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The insulation board was identified on the ceiling and wall cladding in Building 12 contains Chrysotile (white) and Amosite (brown) asbestos fibres. Asbestos insulations boards usually contain between 15-45% asbestos fibres.

The insulation board should be removed under controlled conditions by a specialist asbestos removal contractor and disposed of as asbestos waste before the demolition works commence.

Carrying out removal works with asbestos insulation board will require 14 days notification to the HSA

See Appendix F for more details

DETAIL OF THE ASBESTOS INSULATION BOARD

Asbestos insulation board on the walls of the stairs to the 1st floor in Building 12

Asbestos insulation board on the ceiling and around the beams in Building 12

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 12 Storeroom

Location

Extent/ 10 m² approx.

Amount

Survey Date

6.11.2024

Sample No.

BS 222549

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	Floor tiles and bitumen adhesive
Extent of damage	Medium
Surface treatment	Composite & well bound material
Asbestos type	Chrysotile
	Material assessment score: N/A

Normal occupant activity

Likelihood of disturbance

Human exposure potential

Maintenance activity

TOTAL SCORE: N/A

N/A N/A N/A

Priority assessment score: N/A

PRIORITY ASSESSMENT

CONCLUSIONS AND RECOMMENDATIONS

The floor tiles and bitumen adhesive identified in the ground floor storeroom in Building 12 contains Chrysotile (white) asbestos fibres. Thermoplastic floor tiles can contain up to 25% asbestos fibres. Bitumen adhesive contains a small quantity of asbestos fibres.

The floor tiles and bitumen adhesive should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 13

Roof

Location

Extent/ Amount

ctent/ 20 m² approx.

Survey Date

6.11.2024

Sample No.

BS 222550

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory.

G & L Consultancy Ltd.

MATERIAL ASSESSMENT PRIORITY ASSESSMENT Product type Normal occupant activity Floor tiles N/A Extent of damage Medium Likelihood of disturbance N/A Surface treatment Composite material N/A Human exposure potential Chrysotile N/A Asbestos type Maintenance activity Material assessment score: N/A TOTAL SCORE: N/A Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The floor tiles identified on the floors in the ground floor office contains Chrysotile (white) asbestos fibres. Thermoplastic floor tiles can contain up to 25% asbestos fibres.

The floor tiles should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Roof

Location

Extent/ Amount

Building 14

900 m² approx. floor area

Survey Date

6.11.2024

Sample No.

BS 222551

Survey Company

Phoenix Environmental Safety Ltd.

N/A

N/A

Testing Laboratory. G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	Cement sheeting
Extent of damage	Weathered
Surface treatment	None
Asbestos type	Chrysotile
	Material assessment score: N/A

Normal occupant activity Likelihood of disturbance Human exposure potential Maintenance activity

N/A N/A

PRIORITY ASSESSMENT

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The corrugated asbestos cement sheeting identified on the roof of the building contains Chrysotile (white) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement sheeting should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 14

Location

Extent/ Amount Roof

175 m² approx. floor area

Survey Date

6.11.2024

Sample No.

BS 222552

Survey Company

TOTAL SCORE: N/A

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

MATERIAL ASSESSMENT

Cement sheeting

Extent of damage

Surface treatment

Asbestos type

Product type

Medium

None

Chrysotile & Crocidolite

Material assessment score: N/A

PRIORITY ASSESSMENT

Normal occupant activity N/A

Likelihood of disturbance N/A

N/A Human exposure potential

N/A Maintenance activity

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The corrugated asbestos cement sheeting identified on the lean-to roof at the rear of building 14 contains Chrysotile (white) and Crocidolite (blue) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement sheeting should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 14

Ceiling

Location

Extent/

Amount

Survey Date

6.11.2024

Sample No.

N/A

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory.

G & L Consultancy Ltd.

MATERIAL ASSESSMENT

Product type Insulation board

Extent of damage Low

Surface treatment None

Asbestos type Crocidolite (presumed)

Material assessment score: N/A

5 linear meters approx.

Normal occupant activity

N/A

Likelihood of disturbance

Human exposure potential

N/A

Maintenance activity

N/A

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The insulation board was identified on the high level divide between building 13 & 14 is presumed to contain Crocidolite (blue) asbestos fibres. Asbestos insulations boards usually contain between 15-45% asbestos fibres.

When access is available, the board should be sampled. If it is found to be asbestos insulation board, the insulation board should be removed under controlled conditions by a specialist asbestos removal contractor and disposed of as asbestos waste before the demolition works commence.

Carrying out removal works with asbestos insulation board will require 14 days notification to the HSA

See Appendix F for more details

ASBESTOS DATA SHEET

Site Details The Cleeves Site, North Circular Road, Limerick

Created By

Date

Site Ref

Location

Client Name Limerick Twenty Thirty
Strategic Development DAC

PE 24-1226

Survey Type R/D Asbestos Survey

Building Ref. Building 15

Extent/
Amount

565 m² approx. floor area

Roof

Survey Date
Survey Company

Testing Laboratory.

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	Cement sheeting
Extent of damage	Weathered
Surface treatment	None
Asbestos type	Chrysotile
	Material assessment score: N/A

Normal occupant activity

Likelihood of disturbance

Human exposure potential

Maintenance activity

N/A

N/A

N/A

N/A

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The corrugated asbestos cement sheeting identified on the roof of the building contains Chrysotile (white) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement sheeting should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

ASBESTOS DATA SHEET

Survey Date 6.11.2024 **Survey Company** Testing Laboratory.

Sample No. BS 222555 Phoenix Environmental Safety Ltd. G & L Consultancy Ltd.

	MATERIAL ASSESSMENT
Product type	Cement sheeting
Extent of damage	Medium
Surface treatment	None
Asbestos type	Chrysotile & Crocidolite
	Material assessment score: N/A

165 m² approx.

Extent/

Amount

PRIORITY ASSESSMENT Normal occupant activity N/A Likelihood of disturbance N/A N/A Human exposure potential N/A Maintenance activity TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The corrugated asbestos cement sheeting identified on the roof of the building contains Chrysotile (white) and Crocidolite (blue) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement sheeting should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

All asbestos removal work must be carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Building 16

Rear entrance area

Location

Extent/ 40 m² approx.

Survey Date

6.11.2024

Sample No.

BS 222556

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

Product type
Floor tiles and bitumen adhesive
Extent of damage
High
Surface treatment
Asbestos type
Chrysotile

Material assessment score: N/A

Normal occupant activity

Likelihood of disturbance

Human exposure potential

Maintenance activity

N/A
N/A
N/A

Priority assessment score: N/A

PRIORITY ASSESSMENT

CONCLUSIONS AND RECOMMENDATIONS

The floor tiles and bitumen adhesive identified in the rear entrance area contain Chrysotile (white) asbestos fibres. Thermoplastic floor tiles can contain up to 25% asbestos fibres. Bitumen adhesive contains a small quantity of asbestos fibres.

The floor tiles and bitumen adhesive should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

All asbestos removal work must be carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Rear pitch of the roof

Site Ref

PE 24-1226

Building Ref.

Building 17

Location

Extent/ 50 m² approx. floor area

Amount

Survey Date

6.11.2024

Sample No.

BS 222558

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

Product type Cement slates

Extent of damage Medium

Surface treatment None

Asbestos type Chrysotile & Crocidolite

Material assessment score: N/A

Normal occupant activity

Likelihood of disturbance

Human exposure potential

Maintenance activity

N/A
N/A
N/A

PRIORITY ASSESSMENT

P

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

TOTAL SCORE: N/A

The cement slates identified on the rear pitch of the roof contains Chrysotile (white) and Crocidolite (blue) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement slates should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

All asbestos removal work must be carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010

ASBESTOS DATA SHEET

Sample No.

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

	MATERIAL ASSESSMENT		PRIORITY ASSESSMENT
Product type	Cement gutter & associated debris	Normal occupant activity	N/A
Extent of damage	High	Likelihood of disturbance	N/A
Surface treatment	None	Human exposure potential	N/A
Asbestos type	Chrysotile	Maintenance activity	N/A
	Material assessment score: N/A	TOTAL SCORE: N/A	Priority assessment score: N/A

Survey Date

Survey Company

Testing Laboratory.

CONCLUSIONS AND RECOMMENDATIONS

The cement gutters and associated debris were identified within the building contains Chrysotile (white) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement gutters and associated debris should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

All asbestos removal work must be carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Roof areas

Not quantified

Building Ref.

Throughout site

Location

Extent/

Amount

Survey Date

6.11.2024

Sample No.

BS 222509

Survey Company

Testing Laboratory.

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

Product type

Cement gutters and downpipes

Extent of damage

High

Surface treatment

Cement

Chrysotile & Amosite

Material assessment score: N/A

Normal occupant activity

Likelihood of disturbance

Human exposure potential

Maintenance activity

N/A
N/A
N/A

PRIORITY ASSESSMENT

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The cement gutters and downpipes identified on buildings throughout the site contains Chrysotile (white) and Amosite (brown) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement gutters and downpipes should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

All asbestos removal work must be carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010

FURTHER DETAIL OF THE ASBESTOS CEMENT RAINWATER GOODS

View of the asbestos cement gutters and downpipes on building 4

View of the asbestos cement gutters and downpipes on building 9

FURTHER DETAIL OF THE ASBESTOS CEMENT RAINWATER GOODS

View of the asbestos cement gutters and downpipes on building 14

View of the asbestos cement gutters and downpipes on building 15

ASBESTOS DATA SHEET

Phoenix Environmental Safety Ltd.

G & L Consultancy Ltd.

	MATERIAL ASSESSMENT		PRIORITY ASSESSMENT
Product type	Cement debris	Normal occupant activity	N/A
Extent of damage	High – debris	Likelihood of disturbance	N/A
Surface treatment	None	Human exposure potential	N/A
Asbestos type	Chrysotile	Maintenance activity	N/A
	Material assessment score: N/A	TOTAL SCORE: N/A	Priority assessment score: N/A

Survey Company

Testing Laboratory.

CONCLUSIONS AND RECOMMENDATIONS

The cement debris identified throughout the site contains Chrysotile (white) and Crocidolite (blue) asbestos fibres. Asbestos cement products usually contain between 10-15% asbestos fibres, bound in Portland cement.

The cement debris should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

All asbestos removal work must be carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010

FURTHER DETAIL OF THE ASBESTOS CEMENT DEBRIS

Asbestos cement debris in the rear of Building 17

Asbestos cement debris along the rear of building 4

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Throughout site

Location

Extent/ Amount E 24-1226

Old electrical boxes

Doors of the electrical units

Survey Date

6.11.2024

Sample No.

BS 222519

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory.

G & L Consultancy Ltd.

MATERIAL ASSESSMENT

Product type Rope seals Normal occupant

Extent of damage Medium Likelihood of dis

Surface treatment None Human exposure

Asbestos type Chrysotile Maintenance

Material assessment score: N/A TOTAL SCORE: N/A

Normal occupant activity

N/A

Likelihood of disturbance

N/A

N/A

N/A

N/A

Maintenance activity N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The rope seals identified on the doors of the electrical units throughout the site contain Chrysotile (white) asbestos fibres. Rope seals can contain up to 100% asbestos fibres

The rope seals should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

All asbestos removal work must be carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010

ASBESTOS DATA SHEET

Created By

Andrew Hickey

Date

12th November 2024

Site Details

The Cleeves Site, North Circular Road, Limerick

Client Name

Limerick Twenty Thirty Strategic Development DAC

Survey Type

R/D Asbestos Survey

Site Ref

PE 24-1226

Building Ref.

Throughout site

Pipework flanges

Location

Extent/ 1 per flange Amount

Survey Date

6.11.2024

N/A

Sample No.

BS 222519

Survey Company

Phoenix Environmental Safety Ltd.

Testing Laboratory. G & L Consultancy Ltd.

Normal occupant activity

Likelihood of disturbance

Human exposure potential

Maintenance activity

N/A N/A

PRIORITY ASSESSMENT

TOTAL SCORE: N/A

Priority assessment score: N/A

CONCLUSIONS AND RECOMMENDATIONS

The compressed asbestos fibre (CAF) gaskets identified between the old pipework flanges throughout the site contain Chrysotile (white) asbestos fibres. CAF gaskets have an asbestos content approaching 100% asbestos fibres, which is mixed with a small amount of binder

The CAF gaskets should be removed by an asbestos removal contactor and disposed of as asbestos waste before the works commence.

See Appendix F for more details

All asbestos removal work must be carried out in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010

APPENDIX D

NON ASBESTOS CONTAINING MATERIALS

Pipework insulation in building 1

Spark arrestors and backing boards on redundant electrics in building 2

61

Rope on the tank in the attic in building 4

Rope on the pipework on the 3^{rd} floor in building 4

Lean-to roof in building 4

Felt on the 1st floor in building 4

Coating sampled from the tank in the main attic of building 9

Polystyrene insulation in the wall panels of building 8

Plasterboard ceiling tiles in building 5

Pipework insulation sampled in building 5

Ceramic floor tiles in building 5

Black compound sampled in the security area of building 10

Floor tiles sampled from the hallway

Metal cladding on the rear outbuilding

APPENDIX E

NON ACCESSIBLE LOCATIONS

- The upper floors in Building 2 were inaccessible. All stairs leading to this area were damaged or in very poor condition
- The attic area in Building 4 were not fully accessible due to the condition of the ceilings.
 Most areas were inaccessible and only viewed from a safe distance from the lift motor room
- The attic on the south side of building 9 was not accessible
- The storeroom in building 10 was locked and access was not available
- Building 12 was live. Intrusive sampling was limited in the occupied areas.
- The attic area in Building 14 was not accessible due to its height. The northern section of Building 14 was full of antiques and access around the building was limited
- No inspection of live electrical or mechanical plant or similar requiring the attendance of a specialist engineer was carried out
- No inspection of any areas requiring specialist access equipment other than a telescopic ladder was carried out
- No underground services or confined spaces where inspected
- Samples have not been taken where the act of sampling would endanger the surveyors or affect the functional integrity of the item concerned
- All contractors working on site should always remain vigilant to the possibility that
 other asbestos containing materials may be concealed within the fabric of the building
 or equipment. If any suspect asbestos containing materials are uncovered during the
 course of the work, works must stop in that area and the suspect material should be
 sampled and analysed immediately for the presence of asbestos

APPENDIX F

FLOOR PLANS & LOCATION OF ASBESTOS CONTAINING MATERIALS

Schematic diagram only The Cleeves Site, North Circular Road, Not to scale 12th November 2024 Limerick **ROOF PLAN** Lansdowne Ha Condell Rd Areas where asbestos cement sheeting was identified Areas where asbestos cement slates were identified Areas where asbestos roof felt was identified Note: Cement debris, CAF gaskets and asbestos rope were identified throughout the site

Schematic diagram only The Cleeves Site, Not to scale North Circular Road, 12th November 2024 Limerick SITE LAYOUT (4TH FLOOR PLAN) Lansdowne Ha Condell Ra Area where asbestos containing thermal insulation was identified on the boiler unit Cement debris, CAF gaskets and asbestos rope were identified throughout the site Note: Note: Asbestos containing debris was identified in the attic area beside the lift motor room Note: Asbestos rope was identified on the electrics in the lift motor room


Schematic diagram only The Cleeves Site, Not to scale North Circular Road, 12th November 2024 Limerick SITE LAYOUT (GROUND FLOOR PLAN) Lansdowne Condell Ra Area where asbestos insulation board (AIB) was identified Areas where asbestos thermal insulation was identified Areas where asbestos millboard was identified Area where asbestos insulation board was presumed No access

Cement debris, CAF gaskets and asbestos rope were identified throughout the site

Note:

Schematic diagram only
Not to scale
North Circular Road,
12th November 2024
Limerick

SITE LAYOUT (GROUND FLOOR PLAN)

Areas where asbestos containing floor tiles were identified Areas where asbestos containing floor tiles and bitumen adhesive were identified Note: Cement debris, CAF gaskets and asbestos rope were identified throughout the site		Areas where asbestos containing paper backed lino was identified
		Areas where asbestos containing floor tiles were identified
Note: Cement debris, CAF gaskets and asbestos rope were identified throughout the site		Areas where asbestos containing floor tiles and bitumen adhesive were identified
	Note:	Cement debris, CAF gaskets and asbestos rope were identified throughout the site

Appendix B. Construction Traffic Management Plan

B.1 Outline Construction Traffic Management Plan (AtkinsRealis, 2025)

AtkinsRéalis

Outline Construction Traffic Management Plan

Limerick City & County Council in partnership with Limerick Twenty Thirty DAC

September 2025 OCTMP

100117216DG0014

CLEEVES RIVERSIDE QUARTER

Notice

This document and its contents have been prepared and are intended solely as information for Limerick City & County Council in partnership with Limerick Twenty Thirty DAC and use in relation to Outline Construction Traffic Management Plan.

AtkinsRéalis Ireland Limited assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

This document has 32 pages including the cover.

Document History

Document title: Outline Construction Traffic Management Plan

Document reference: 100117216DG0014

Revision	Purpose description	Originated	Checked	Reviewed	Authorised	Date
0	Draft	ASM	PF	PF	PF	01/10/2025
1	Final	ASM	PF	PF	PF	03/10/2025

Client signoff

Client	Limerick City & County Council in partnership with Limerick Twenty Thirty DAC
Project	CLEEVES RIVERSIDE QUARTER
Job number	100117216
Client	

signature/date

Contents

1.	Introd	luction	5
	1.1	Site Location	5
2.	The P	roposed Development	7
	2.1	Scheme Description	7
	2.2	Proposed Development Description	7
3.	Gene	ral Site Set-Up and Pre-Commencement Measures	9
4. Proj		oject Programme, Sequencing and Methodology	
	4.1	Project Sequencing and Phasing	11
	4.2	Construction Equipment	13
5.	Outlin	e Construction Traffic Management	14
	5.1	Overview	14
	5.2	Key Construction Activities	14
	5.3	Construction Site Access and Egress	15
	5.4	Routing of Stages Construction Traffic	16
	5.4.1	Stage 1	17
	5.4.2	Stage 2	
	5.4.3	Stage 3	
	5.4.4	Stage 4	
	5.4.5 5.4.6	Stage 5Stage 6	
	5.4.7	Stage 7	
	5.4.8	Stage 8	
	5.4.9	Stage 9	
	5.5	Construction Traffic Impact Analysis	
	5.6	Key Construction Traffic Management Issues	27
	5.7	Site Actions to overcome Construction Traffic Management Issues	27
	5.8	Traffic Management Signage	28
	5.9	Additional Mitigation	28
	5.9.1	Road Cleaning / Dust Suppression	
	5.9.2	Enforcement of OCTMP	28
6.	Sumn	nary	29
App	endix A.	Construction Traffic Routing & Signage	31
Tab	les		
Table	e 4-1 - Co	onstruction Phasing, and Timelines	12
Table	e 5-1 - Co	omparison of total traffic volumes through the Salesians roundabout – existing v. construction	26

Figures

Figure 1-1 - Masterplan Application Boundary	6
Figure 3-1 - Example Site Compound Locations (Subject to confirmation upon contractor appointment)	10
Figure 3-2 – Example Site Compound Locations (Subject to confirmation upon contractor appointment)	10
Figure 5-1 – Site Access and Egress Routing	15
Figure 5-2 - Construction and Logistical Considerations Stage 1 - Bat Houses	17
Figure 5-3 - Construction and Logistical Considerations Stage 2 - Demolitions and Infrastructure works	18
Figure 5-4 - Construction and Logistical Considerations Stage 3 - Flood Protection Works	19
Figure 5-5 - Construction and Logistical Considerations Stage 4 - Salesians	20
Figure 5-6 - Construction and Logistical Considerations Stage 5 - Stonetown Terrace	21
Figure 5-7 - Construction and Logistical Considerations Stage 6 - O'Callaghan Strand	22
Figure 5-8 - Construction and Logistical Considerations Stage 7 - PBSA	23
Figure 5-9 - Construction and Logistical Considerations Stage 8 - Flaxmill Plaza	24
Figure 5-10 - Construction and Logistical Considerations Stage 9 - Shipyard Mobility Hub	25

1. Introduction

This Outline Construction Traffic Management Plan has been prepared by AtkinsRéalis Ireland Ltd. in conjunction with the developer Limerick City & County Council, in partnership with Limerick Twenty Thirty DAC as part of the planning application for the Proposed Cleeves Riverside Quarter Development.

The proposed development comprises Phase II, of an overall Masterplan with four phases of development proposed. Phase II will commence subsequent to ongoing emergency stabilisation and repair of the Flaxmill protected structure (Phase I). Phase III is intended to comprise an educational campus, inclusive of the adaptive reuse of the Flaxmill Building as part of that development and will be subject to a future separate application. Phase IV comprising the Shipyard site will be the final phase of development.

This document provides a brief overview of the project, including sequencing and construction traffic routing. Its purpose is to outline the preliminary measures to be implemented and to guide the Main Contractor in preparing and executing a Detailed Construction Traffic Management Plan (CTMP) during the construction and demolition phases. The CTMP will be agreed upon with the Local Authority prior to commencement of works. As such, this Outline CTMP (OCTMP) is considered a "live document," allowing for updates to reflect changes in programme or operations introduced by the appointed contractor at construction stage.

It should be noted that all relevant health and safety considerations and statutory requirements (including but not limited to the preparation of a Preliminary Safety and Health Plan) will be addressed separately as the project progresses. As such, health and safety aspects are not included in this preliminary document.

1.1 Site Location

The site is located on the northern bank of the River Shannon, directly opposite Limerick City Centre as shown in Figure 1-1. The site is bisected by the North Circular Road, with the majority of the site located on the northern side of this road. The site is bounded by O'Callaghan Strand to the East, and Condell Road/Shannon Bridge to the South. Condell road is at a higher elevation than the site, with steps and an accessible ramp currently used for pedestrian connection between the site and the road.

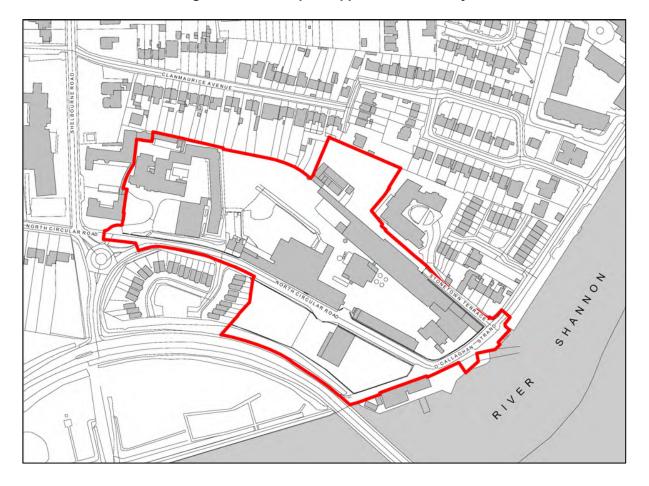


Figure 1-1 - Masterplan Application Boundary

2. The Proposed Development

2.1 Scheme Description

Limerick City & County Council, in partnership with Limerick Twenty Thirty DAC, intends to seek the approval of An Coimisiún Pleanála in accordance with Section 175 and 177AE of the Planning and Development Act 2000, as amended, for a mixed-use development that seeks the regeneration and adaptive reuse of a strategic brownfield site, as part of the Limerick City and County Council 'World Class Waterfront revitalisation and transformation project'.

The site, known locally as 'Cleeves Riverside Quarter' comprises the former industrial mill complex ('Cleeves') situated on the northern side of the River Shannon, Limerick City and occupies the area between; Stonetown Terrace Road to the northeast; O'Callaghan Strand to the southeast; Condell Road (R527) to the southwest; and, Salesian Primary School and the 'Fernhill' residential estate to the northwest and west respectively - all situated in the townland of Farranshone More in Limerick City. The site is dissected by North Circular Road where it extends between Shelborne Road Lower and O'Callaghan Strand.

2.2 Proposed Development Description

The proposed development includes two designated protected structures within the site area; the Flaxmill Building (PS Ref no.264 & NIAH No. 21512053) and the octagonal brick chimney (PS Ref no.265 & NIAH No. 21512059), both of which are to be retained.

The proposed development includes:

- Demolition of a number of structures to facilitate development including (i) Salesians Secondary School and Fernbank House; (ii) 2 no. houses on North Circular Road; (iii) Residual piers from the basin of the reservoir; (iv) Upper Reservoir on Stonetown Terrace comprising 2 no. concrete water tanks, pump house and liquid storage tank; (v) 1960's lean-to building structures adjoining the Cold Store (former Weaving Mill); (vi) remaining fabric of c20th rear lean-to of the Flaxmill Building; (vii) c.1960s office building adjoining the Packing Store and Cheese Plant on North Circular Road; (viii) Cluster of buildings including altered part of the Linen Store, the former Linen Store, Storage Building, and Office/Lab building at O'Callaghan Strand / Stonetown Terrace with partial retention of existing stone wall; (ix) warehouse on the Shipyard site; and (x) partial removal of stone boundary wall defining the Cleeves site adjoining O'Callaghan Strand / Stonetown Terrace and around the Shipyard site.
- Construction and phased delivery of:
 - Residential Development in 4 development 'zones' within the site ranging in height from 3 7 storeys (with screened service plant at roof level) comprising; (a) 234 no. residential units; (b) 270 no. student bedspaces with ancillary resident services at ground floor level; (c) 299sqm of commercial floorspace; and (d) a creche. The specific development details of each proposed development zone comprise the following:
 - Salesians Zone 1 no. building with 2 no. blocks extending to 6 and 7 storeys comprising 146 no. apartments (76 no. 1 bed; and 70 no. 2 bed); a creche; semi basement car and bicycle parking; reception area, plant rooms, and refuse storage, with screened external plant and photovoltaic panels at roof level; 20 no. 3 storey 3 bed triplexe units with photovoltaic panels at roof level; and 30 no. car parking spaces for the dedicated use of the adjoining Salesians Primary School.

- Quarry Zone 1 no. Purpose Built Student Accommodation (PBSA) building with 3 no. blocks extending to 6 and 7 storeys comprising 270 no. bedspaces with study rooms, shared areas, exercise room, reception area, plant rooms, refuse storage and bicycle parking all at ground floor level and screened external plant and photovoltaic panels at roof level. Provision is made for telecommunication antennae on the roof top of one block. Consent is also sought for use of the PBSA accommodation, outside of student term time, for short-term letting purposes.
- Stonetown Terrace Zone 1 no. building extending to 4 5 storeys comprising 38 no. apartments (6 no. studios; 12 no. 1 beds; and 20 no. 2 beds) with plant rooms and refuse storage at ground level, ancillary infrastructure at basement level at northern end of the block, with screened external plant and photovoltaic panels at roof level; 9 no. 3 storey 3 bed townhouses with photovoltaic panels at roof level; and a dedicated secure bicycle storage facility.
- O'Callaghan Strand Zone 1 no. building extending to 4 / 5 storeys comprising 21 no. apartments (9 no. 1 bed and 12 no. 2 bed) with an open roof structure accommodating communal open space, plant and photovoltaic panels; and 299qm of commercial ground floorspace intended to accommodate Class 1, Class 2 and / or Class 3 uses, with provision for car parking in the undercroft.
- Dedicated mobility hub with canopy and photovoltaic panels including double stacker bicycle parking; and EV Charging spaces, within the Shipyard Zone. A dedicated pedestrian/cycle link connects North Circular Road with Condell Road. The remaining area of the zone shall accommodate temporary car parking and a temporary external event space to be used on a periodic basis as the need arises, pending future redevelopment proposals as detailed in the Masterplan (Stage IV).
- Extensive provision of Public Realm including creation of the Reservoir/Quarry Park, the Flaxmill Square and the Riverside Corridor. Significant areas of civic and green spaces are provided, incorporating formal and informal play space; nature based SuDs, permeability and access; and a riverside canopy with photovoltaic panels functioning as an outdoor event space and incorporating heritage interpretative panels
- 3 no. dedicated bat houses;
- Telecommunication antennae on roof of Block 2A of the PBSA, including (a) 9 no. Support poles to support 2 no. antennae each; (b) 6 no. microwave dishes affixed to the plant screen; and (c) associated telecommunications equipment and cabinets (effectively screened). To facilitate technologically acceptable locations at the time of delivery, a micro-siting allowance of 3m is proposed on the roof top of Block 2A of the PBSA for the infrastructure.
- Provision of vehicular access/egress points including (a) utilisation of existing access points to the Salesians Zone, to the Flaxmill and Quarry Zones and to the Mobility Hub on the Shipyard Site Zone; (ii) reopening an existing (currently blocked) access point off O'Callaghan Strand; (iii) new access points to the proposed undercroft carparking at Salesians from the North Circular Road and at the end of Stonetown Terrace road which provides access to the Stonetown Terrace Zone; and (iv) emergency access only from Stonetown Terrace to the Flaxmill Zone:
- Provision of 30 no. dedicated car parking spaces to serve the Salesians Primary School; and
- All ancillary site development works including (a) water services, foul and surface water drainage and associated connections across the site and serving each development zone; (b) attenuation proposals; (c) raising the level of North Circular Road between Fernhill and O'Callaghan Strand; (d) refuse collection store (e) car and bicycle parking to serve the development; (f) public lighting; (g) all landscaping works.; and (h) temporary construction measures including (i) construction access to the Quarry site including provision of a temporary access across the reservoir; and (ii) temporary use of onsite mobile crusher.

3. General Site Set-Up and Pre-Commencement Measures

In advance of any works commencing onsite, a Detailed Construction Traffic Management Plan will be submitted to the Local Authority as part of obtaining a validated Commencement Notice and will elaborate on the principles set out in this document. The Detailed Construction Traffic Management Plan will include all relevant mitigation measures and monitoring requirements as stated within the EIAR along with any relevant conditions which may be attached to statutory consents (including but not limited to planning permission) for the proposed development.

In general, the following measures will be carried out by the Main Contractor in advance of commencing any Works and will be included in the pre-commencement Construction and Demolition Traffic Management Plan:

- A full condition survey of the public infrastructure that will be utilised or affected by construction traffic, prior to the commencement of any work on the site, will be carried out. This condition survey will include an inventory of the road network intended to be used by vehicles, weight restrictions to be imposed on vehicles, a full colour photographic record of the road network intended to be used, a full written account of the existing condition and structural integrity of the infrastructure detailing all existing defects and features;
- Prior to any site works commencing, the Main Contractor will investigate / identify the exact location of and tag all
 existing services and utilities around and through the site with the assistance of the relevant Local Authority
 Technical Divisions and Utility Providers.
- A site compound including offices and welfare facilities to accommodate all operatives will be set up by the Main Contractor including sufficient hardstanding to ensure that no parking of construction related vehicles will be permitted on the adjoining road network and if required to hold on site for a period of time, they can be accommodated within the site boundary. Figure 3-1 and Figure 3-2 show indicative locations which are subject to confirmation by the contractor upon appointment.
- Measures will be put in place to ensure no waste, dirt, debris, or other material shall be deposited on the public road or verge by machinery or vehicles travelling to or from the site during the construction phase. Excavated material will generally be stored on site for removal near to the completion of the project or at a stage where the removal can be aligned with favourable weather conditions, timing relative to local traffic, etc.
- Site access will be controlled, and the surrounding road network monitored to ensure that the roads and footpaths
 affected by the construction works are maintained in a safe and tidy condition. Road sweepers will be utilised as
 required.
- Site security lighting will be located and designed so as not to result in glare on the public road or to impact negatively on any nearby dwellings and will be cognisant of ecology requirements.
- Typical working hours for the site will be subject to the condition of the planning permission but are expected to be Monday to Friday from 07:00 to 19:00 and Saturdays from 07:00 to 14:00. Special construction operations may need to be carried out outside these hours to minimise disruption to the surrounding area, which will be subject to agreement with the Local Authority. Deviation from these times will only take places when written approval is granted by LCCC in exceptional circumstances.
- All comments and any specific considerations/requirements as noted in the final planning permission grant will be addressed in the detailed Construction Traffic Management Plan(s) for approval by the Local Authority ahead of implementation onsite; and, prior to commencement the contractor will review what routes are available for construction traffic.

Figure 3-1 - Example Site Compound Locations (Subject to confirmation upon contractor appointment)

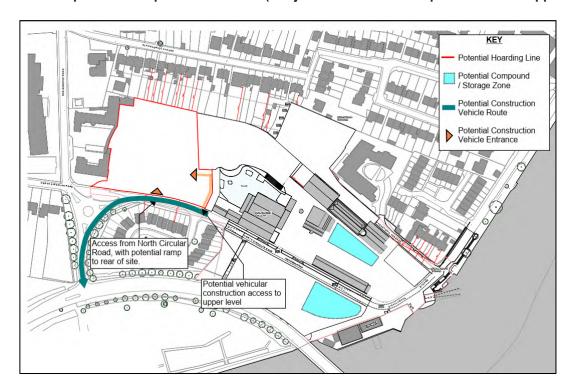
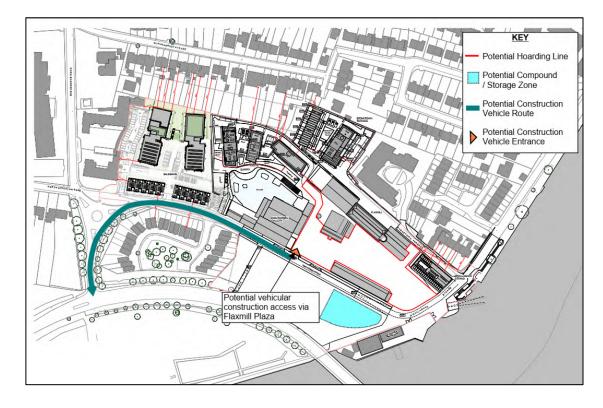



Figure 3-2 – Example Site Compound Locations (Subject to confirmation upon contractor appointment)

4. Project Programme, Sequencing and Methodology

4.1 Project Sequencing and Phasing

The development is structured into nine distinct but overlapping stages as outlined in Table 4-1. Depending on market conditions and delivery mechanisms, some stages may progress more quickly or slightly ahead of others. For instance, Stage 8 is a priority for early delivery, as it will significantly enhance the site's appearance and help establish Cleeves as an attractive place to live, work, and enjoy leisure activities. Therefore, Stage 8 may begin earlier than planned, depending on the progress of Stages 6 and 7.

Therefore, it is possible that several contractors will be working on the proposed development site at the same time, depending on the final procurement process. It is also noted that the final programme will potentially involve delivery of individual plots / zones independently within the development site boundary. Accordingly, a preliminary strategy for delivery of individual plots / zones independently has been developed and is discussed in further detail below.

If a grant of planning is received, the construction activities on site will commence in Q1 2027 with construction of bat houses. It is anticipated the Proposed Development will be completed in 2030. Refer to Table 4-1 for the breakdown of the construction stages.

Table 4-1 - Construction Phasing, and Timelines

Stage	Description	Estimated Start and End	Construction Duration (months)
Stage 1	Construction of Bat Houses - A 3-month period is allocated exclusively to this stage to allow bats on-site to adjust to their new accommodation. No other construction activity will overlap with this stage.	Q1 2027	3months
Stage 2	Site Demolition and Enabling Works - This stage involves demolishing identified buildings and structures to facilitate development and installing enabling drainage infrastructure across the Flaxmill area. Temporary surface treatments will be applied to support access to the upper-level sites (Salesians and Stonetown). Asbestos removal, pre-condition surveys and removal of contaminated soils across the development as required will be undertaken during this stage of works.	Q2 2027 – Q2 2028	12-15months
Stage 3	Flood Protection Works - Raising the North Circular Road and implementing other flood protection measures will occur concurrently with Stage 2 and is expected to take 15 months.	Q2 2027 – Q2 2028	15months
Stage 4	Salesians Zone Development - Construction of apartments and townhouses, along with local public realm and communal open spaces, will begin midway through Stage 2	Q1 2028 – Q4 2029	18-24months
Stage 5	Stonetown Terrace Zone Development - This stage will likely begin alongside Stage 4 and take 15–18 months. Given its timeline, Stonetown Terrace is expected to be the first zone ready for occupation	Q1 2028 – Q2 2029	15-18months
Stage 6	O'Callaghan Strand Zone Development - Construction of apartments in this zone will begin midway through the Stonetown Terrace works and is expected to take 15 months, likely completing before the Salesians Zone	Q3 2028 – Q3 2029	15months
Stage 7	Quarry Zone PBSA and Public Realm - This stage includes the construction of Purpose-Built Student Accommodation (PBSA) and associated amenities, as well as public realm improvements around the reservoir.	Q3 2028 – Q2 2030	24months
Stage 8	Flaxmill Plaza and Riverside Public Realm - Delivery of Flaxmill Plaza and riverside canopy works is anticipated to take 15 months. This stage will begin after the completion of Stonetown Terrace but before the Salesians Zone is finished. Completion is expected to align with the PBSA	Q2 2029 - Q2 2030	15months
Stage 9	Shipyard Mobility Hub - The final stage involves constructing the Mobility Hub on the Shipyard site, along with associated site works. This will commence once all other stages are complete and is expected to take 6 months	Q3 2030 - Q4 2030	6months

4.2 Construction Equipment

Details of machinery to be used on site will include (but not limited to) the following standard site equipment:

- Tracked excavators / JCBs.
- Wheel Loaders.
- Bulldozers.
- Compact Track Loaders.
- Articulated Trucks.
- Tower Cranes (Mobile and / or Fixed).
- Dump Trucks.
- Excavators.
- Mobile Concrete Crusher.
- Piling Rig(s).
- Mobile pumps / generators.
- Power tools.

This is a non-exhaustive list and the equipment used onsite will depend on the specific construction phasing and methodology to be implemented by the Contractor(s) once appointed.

5. Outline Construction Traffic Management

5.1 Overview

Prior to the commencement of construction activities, the appointed contractor will assess and confirm available traffic routes in consultation with the Roads Department of Limerick City & County Council and other relevant stakeholders. This process will ensure that all construction-related traffic movements — both on-site and off-site — are carefully planned and coordinated to minimise disruption and safeguard the surrounding environment.

The objective is to proactively manage the impacts of construction traffic on public roads and internal site operations, with full consideration given to the requirements of key stakeholders, including the National Parks and Wildlife Service and the Environmental Protection Agency (EPA).

The overall construction programme is expected to span approximately 36 months. During this period, the number of personnel on site will vary depending on the phase of works. Based on similar developments, it is anticipated that workers will predominantly use shared transport and public transit, helping to reduce traffic volumes. Staff arrival and departure times will be scheduled to avoid peak traffic hours. Heavy Goods Vehicle (HGV) movements have been estimated in line with the Traffic and Transport Assessment prepared by ARUP.

5.2 Key Construction Activities

At this preliminary stage, the proposed development will involve the following key work stages:

- Appointment of the Contractor(s).
- Detailed Design Stage.
- Site preparatory works including the preparation of all required Detailed Safety and Health, and Environmental Management documents.
- Construction of Bat Houses.
- Site mobilisation.
- Site Demolition and Enabling Works.
- Construction Stage (including flood protection works).
- Completion.
- Demobilisation; and,
- Operational Stage.

5.3 Construction Site Access and Egress

In accordance with best practice guidance, construction vehicles will primarily use the strategic road network to minimise disruption to sensitive local roads. The anticipated routing is illustrated in Figure 5-1.

All heavy construction vehicles to be instructed to use N18, via the Clonmacken Roundabout and the R527 Condell Road and access to local road network via Salesian Roundabout then onto North Circular Road access the site. (See attached Figure 5-1).

- Heavy construction vehicles will be directed to use the N18, accessing the site via Clonmacken Roundabout, R527 Condell Road, and Salesian Roundabout, before entering North Circular Road.
- The developer will proactively manage all construction traffic throughout the works.
- Staff and visitor parking will be strictly confined to within the site boundary; adequate on-site parking will be provided.
- Sustainable travel modes such as public transport, walking, and cycling will be encouraged, with bicycle
 parking made available.
- Material deliveries must occur within designated on-site areas; unloading outside the site boundary is prohibited.
- Continuous deliveries, such as concrete pours, will be phased and timed to prevent vehicles from queuing
 or parking on public roads.
- Routine deliveries and waste removal will be scheduled to avoid peak traffic hours on local roads.
- The **developer will issue an information pack** to staff and haulage subcontractors detailing approved HGV routes, parking restrictions, and delivery schedules.
- **Vehicle cleanliness** will be maintained at all times; access points will be managed and adjacent public roads kept clean.
- Any works on public roads will require a road opening licence from the Local Authority, with full compliance to all conditions

Figure 5-1 - Site Access and Egress Routing

5.4 Routing of Stages Construction Traffic

The final construction strategy may involve the phased delivery of individual zones within the development boundary. A preliminary strategy supporting independent zone delivery has been developed, with logistical and construction considerations outlined across nine distinct stages.

Stage 1, comprising the construction of Bat Houses, is scheduled to commence in 2027 and will take approximately three months. Construction access and logistical movements for this stage will be facilitated via the existing site entrance on North Circular Road, accessed from the Salesian Roundabout, as illustrated in Figure 5-2.

Figures 5-2 to 5-10 detail the key considerations for each stage, including access and egress points, site compound locations, flood zone identification, site hoarding, and specific construction activities required to support development.

During the detailed planning phase, each contractor will be responsible for determining the location of their respective site compound, ensuring these are positioned away from environmentally sensitive receptors. Final locations for site offices and welfare facilities will be confirmed prior to commencement and agreed with the Client and Limerick City and County Council (LCCC).

The main construction compound will accommodate offices for all subcontractors, the main contractor, and project managers. While the primary site office and welfare facilities will be located on the Shipyard site for most phases, independent compounds will be established in the O'Callaghan Strand and Quarry Zones following the construction of the Mobility Hub.

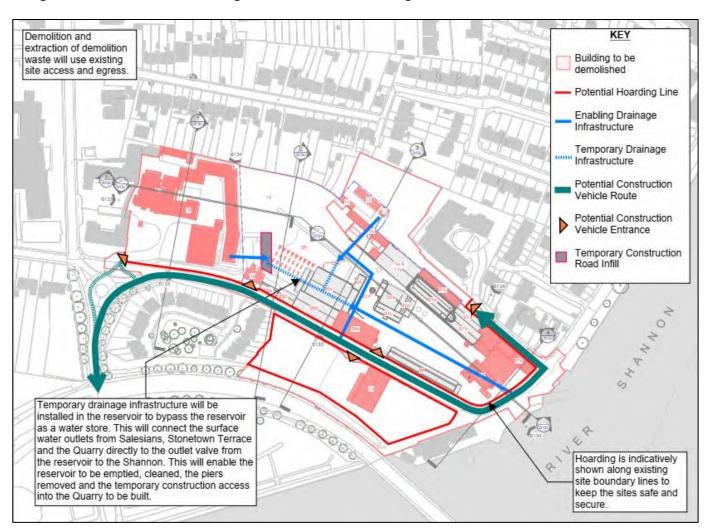
A breakdown of construction traffic routing for each stage is provided in the following section.

5.4.1 Stage 1

Stage 1 — the construction of Bat Houses — is scheduled to begin in 2027 and will take approximately three months to complete. For this stage construction traffic will access the site via two existing access points on North Circular Road and Salesian Roundabout as shown in Figure 5-2.

The construction of the bat houses will use existing site access and egres.

Figure 5-2 - Construction and Logistical Considerations Stage 1 - Bat Houses

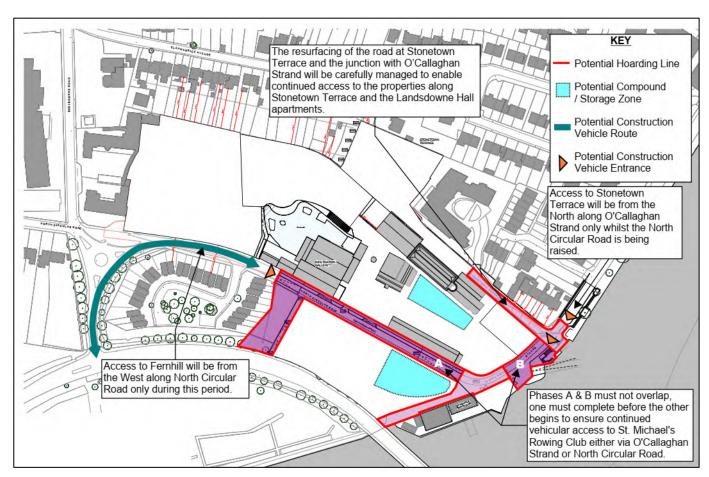


5.4.2 Stage 2

Stage 2 involves site demolition of building and enabling infrastructure works to the Flaxmill area of the site. It is anticipated that this phase will take 12-15months to complete. During this phase a number of construction access points to the site will be required as shown in Figure 5-3 including:

- the Salesian access road.
- two northern entrances: one via Quarry and one via Flaxmill Plaza.
- the south entrance into Shipyard.
- the Stonetown Terrace access road.

Figure 5-3 - Construction and Logistical Considerations Stage 2 - Demolitions and Infrastructure works



5.4.3 Stage 3

During Stage 3 the flood protection works will take place, lasting approximately 15 months. As shown in Figure 5-4: it is anticipated that some partial and full road closures may be required to facilitate these works. Advance warning signage will be agreed and were required local diversion will be sign posted. Local access will be maintained during the phases and works will not overlap for Stage 3a and Stage3b to ensure adequate local access is maintained. Please refer to Appendix A for further details of outline construction traffic management signage for Stage 3.

Figure 5-4 - Construction and Logistical Considerations Stage 3 - Flood Protection Works

5.4.4 Stage 4

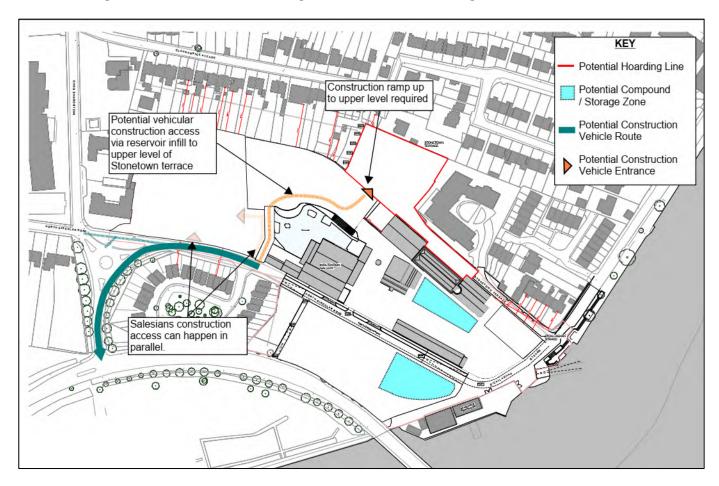
The construction of Salesians zone development (Stage 4) will approximately take 18-24 months and is expected to start in 2028. Construction traffic access to the development zone is anticipated to be off North Circular Road as shown in Figure 5-5.

Rey
Potential Hoarding Line
Potential Compound
/ Storage Zone
Potential Construction
Vehicle Route
Potential Construction
Vehicle Entrance

Road, with potential ramp
to rear of site.

Potential vehicular
construction access to
upper level

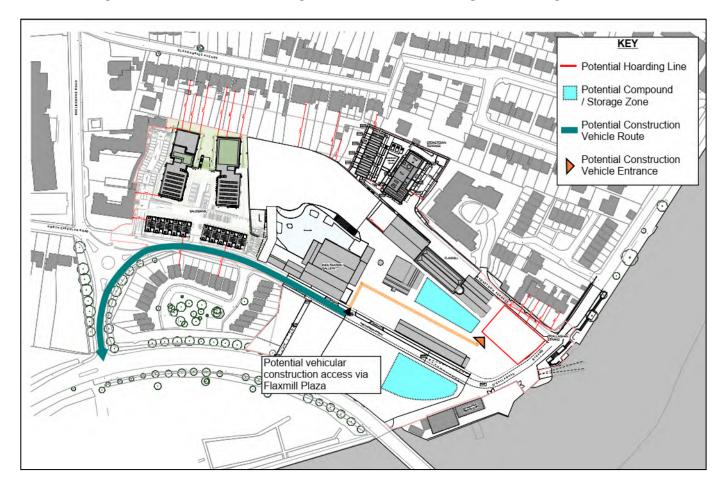
Figure 5-5 - Construction and Logistical Considerations Stage 4 - Salesians



5.4.5 Stage 5

The construction of Stonetown Terrace zone development (Stage 5) will approximately take 15-18 months and is expected to start in 2028 and run in parallel with Stage 4. The construction and logistical movements will occur in parallel with those for the Salesians Zone with access via North Circular Road. as presented in Figure 5-6 below.

Figure 5-6 - Construction and Logistical Considerations Stage 5 - Stonetown Terrace



5.4.6 Stage 6

The construction of O'Callaghan Strand zone development (Stage 6) will approximately take 15 months and is expected commence in Q3 of 2028. The construction and logistical movements will occur from the site access on North Circular Road via Flaxmill Plaza as shown in Figure 5-7.

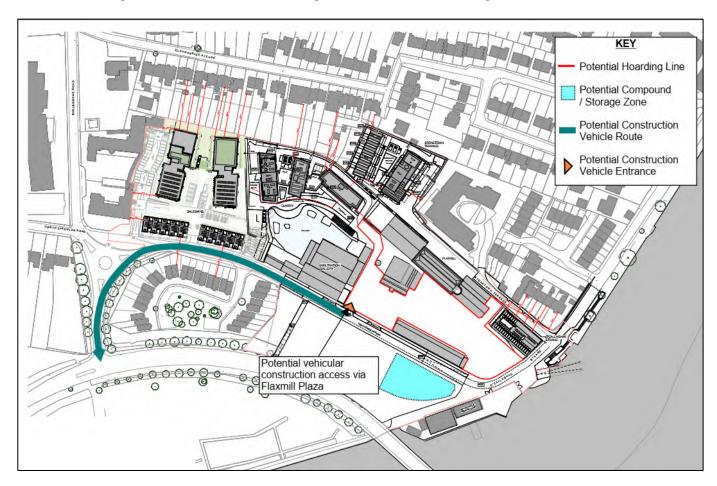
Figure 5-7 - Construction and Logistical Considerations Stage 6 - O'Callaghan Strand

5.4.7 Stage 7

The construction of Quarry Zone PBSA and Public Realm development (Stage 7) will approximately take 24 months and is expected to start in Q3 of 2028. The construction and logistical movements will occur from the site access on North Circular Road either through reservoir infill or through Flaxmill Plaza as presented in Figure 5-8 below.

KEY Potential Hoarding Line Potential Compound / Storage Zone Potential Construction Vehicle Route Potential Construction Vehicle Entrance Potential vehicular construction access via reservoir infill. Potential vehicular construction access via Flaxmill Plaza Plaz.

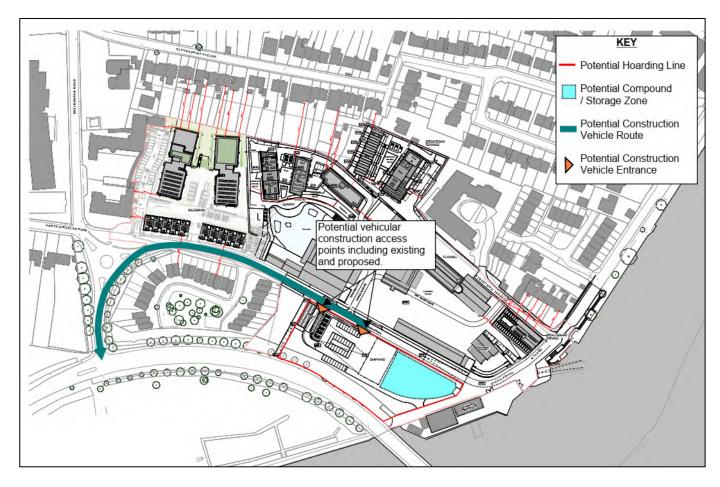
Figure 5-8 - Construction and Logistical Considerations Stage 7 - PBSA



5.4.8 Stage 8

The construction of Flaxmill Plaza and Riverside Public Realm (Stage 8) will approximately take 15 months and is expected to start in Q2 of 2029. The construction and logistical movements will occur from the site access on North Circular Road via Flaxmill Plaza as presented in Figure 5-9 below.

Figure 5-9 - Construction and Logistical Considerations Stage 8 - Flaxmill Plaza



5.4.9 Stage 9

The construction of Shipyard Mobility Hub (Stage 9) will approximately take 6 months and is expected to start in Q3 of 2030. The construction and logistical movements will occur from the site access on North Circular Road via existing car parking entrance and proposed site access road as presented in Figure 5-10 below.

Figure 5-10 - Construction and Logistical Considerations Stage 9 - Shipyard Mobility Hub

5.5 Construction Traffic Impact Analysis

To assess the impact of traffic generated during the construction of the proposed development, the construction trip generation has been compared against the existing traffic flows on the Salesians roundabout.

As noted above, it is expected that there will be no more than 20 additional construction vehicular trips per hour (10 in / 10 out). For robustness purposes, it has been assumed that 100% of construction vehicles travel through the Salesians roundabout.

The construction traffic uplift results in a 2% increase in flows through the Salesians roundabout during the AM and PM peak periods as in below. This is considered to be a marginal uplift, especially considering the robust trip generation assumption and the temporary nature of construction traffic.

Table 5-1 - Comparison of total traffic volumes through the Salesians roundabout – existing v. construction

	Existing vehicle traffic through Salesians roundabout	Expected vehicle traffic (with construction traffic generation)	% change
AM peak	1,052	1,072	2%
PM peak	1,048	1,068	2%

Material delivered by HGV in significant quantities throughout a project would include stone fill, steel reinforcement, blocks and bricks, mortar, precast concrete floors and balconies, timber and roof trusses, windows and cladding, roof tiles/slates, paving and drainage materials. Materials for general internal finishes would tend to be in smaller vehicles but some of the bulkier items would include timber, plaster slabs, kitchens and wardrobes, bathrooms and plumbing supplies. However, these vehicle movements will be spread out over the entire duration of the programme (approximately three years).

5.6 Key Construction Traffic Management Issues

The primary issues that affect construction projects include:

- General site access and egress.
- Interaction with existing facilities and operations.
- The location and amount of parking.
- The timing and extent of material deliveries.
- Traffic conflicts with both existing vehicles and other construction traffic.
- Traffic congestion and conflicts on external roads; and,
- Signage and directions.

5.7 Site Actions to overcome Construction Traffic Management Issues

To effectively manage construction traffic impacts, controlled access points will be established and carefully coordinated to minimise conflicts with other site activities. These measures will be refined and incorporated into the Detailed Construction Traffic Management Plan (CTMP), which will be prepared by the appointed contractor and approved by the Planning Authority prior to commencement.

The following measures, typically included in a CTMP, may be adopted during the construction phase:

- Advance warning signage will be installed at strategic locations to alert road users to construction access
 points.
- Construction and delivery vehicles will be restricted to approved access routes only, as agreed with the Local Authority.
- HGV movements will be limited during school drop-off and pick-up times to reduce disruption near adjacent educational facilities.
- Environmental controls will include the use of dust covers on vehicles transporting loose materials.
- Site speed limits will be enforced through appropriate signage to ensure safe vehicle movement.
- Site vehicle parking will be managed within designated areas; parking on public roads will be prohibited unless covered by approved traffic management measures.
- Road sweepers will be deployed to maintain cleanliness on public roads adjacent to the site.
- Wheel washing facilities will be provided to prevent debris from being carried onto the local road network.
- **Vehicle maintenance protocols** will be enforced to prevent leaks or spills; spill kits will be available on site, and off-site maintenance will not occur on public highways.

Pedestrian safety will be prioritised through the provision of secure, alternative footpaths where existing
routes are obstructed. These will include physical barriers and appropriate signage, with consideration for
vulnerable and mobility-impaired users.

Collectively, these measures aim to minimise environmental impact and ensure public and worker safety throughout the construction period. To support efficient delivery, haulage routes, delivery schedules, and access arrangements will be continuously reviewed and adjusted as necessary to avoid congestion and maintain smooth operations — particularly for critical activities such as concrete pours.

Note: this is not an exhaustive list, and it will be the appointed contractor's responsibility to prepare a detailed Construction Traffic Management Plan to be approved with the Planning Authority, prior to commencement of construction..

5.8 Traffic Management Signage

Proposed signage will include warning signs to alert road users to construction traffic and works access/egress points. All signage will comply with Chapter 8 of the Department of Transport's Traffic Signs Manual — Temporary Traffic Measures and Signs for Roadworks.

Preliminary Construction Traffic Management signage has been developed based on the current understanding of project phasing, sequencing, and access arrangements. These initial plans are provided in Appendix A.

As the project progresses, these preliminary plans will be further refined and incorporated into the Detailed Construction Traffic Management Plan (CTMP), which will be prepared by the appointed contractor in consultation with the Local Authority, relevant stakeholders, and — where appropriate — the local community.

5.9 Additional Mitigation

5.9.1 Road Cleaning / Dust Suppression

The construction contractor will have appropriate controls on site to minimise dust and dirt from spreading onto the public highway. Where and when required the contractor will employ road sweeping and dust suppression equipment to prevent and or clean the highway.

5.9.2 Enforcement of OCTMP

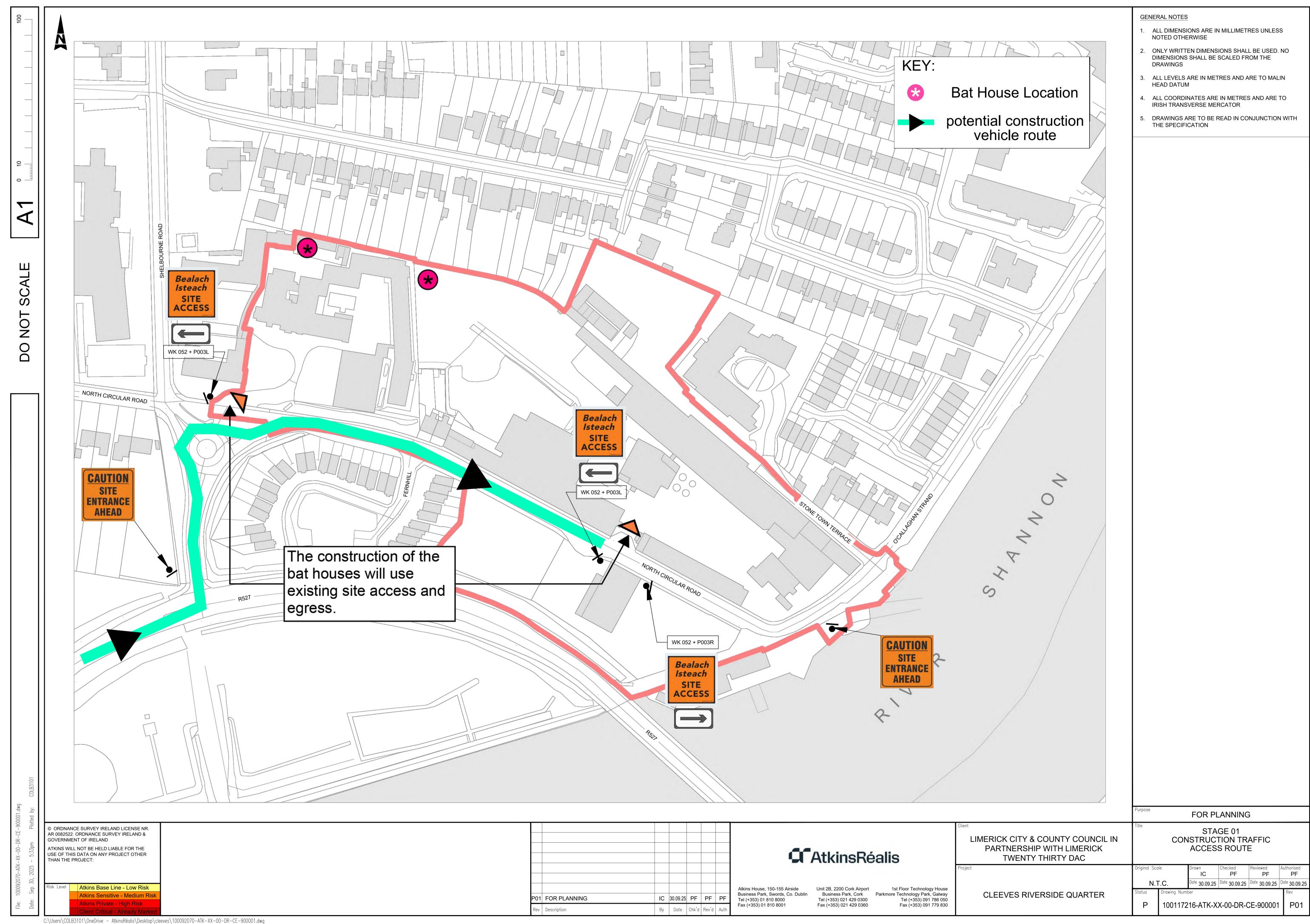
All project staff and material suppliers will be required to adhere to the OCTMP. The Developer shall agree and implement monitoring measures to confirm effectiveness of the OCTMP.

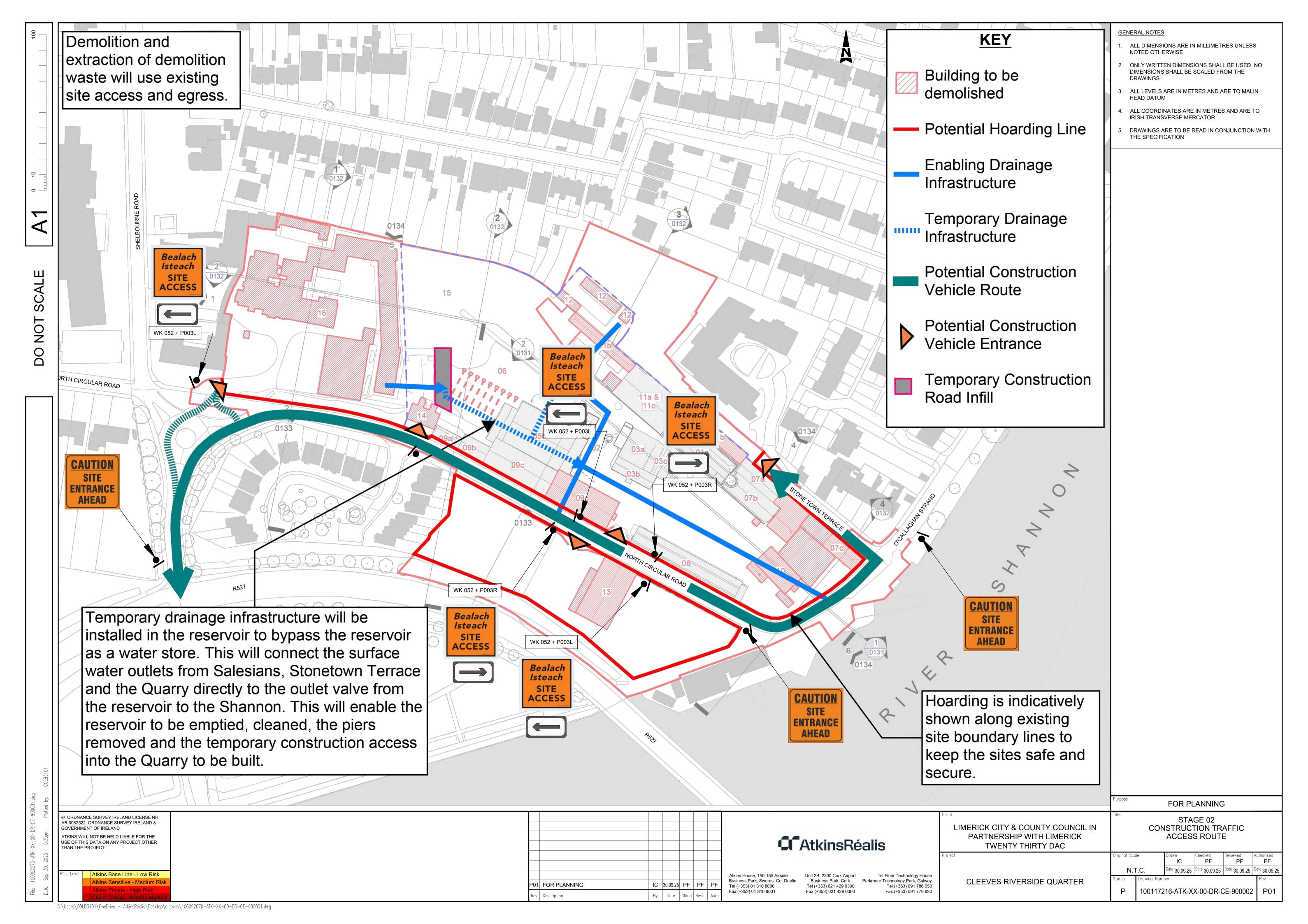
6. Summary

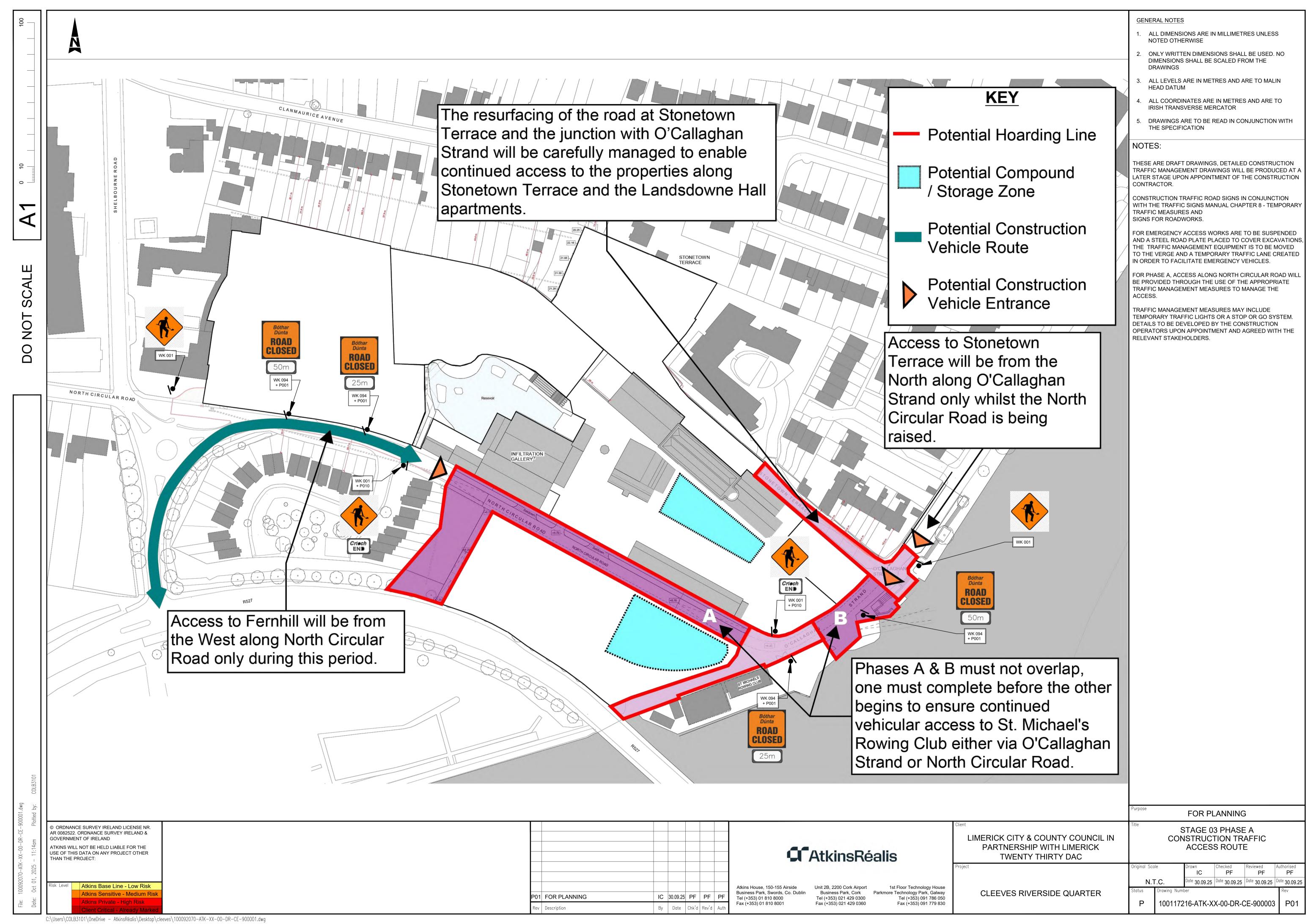
This Outline Construction Traffic Management Plan (OCTMP) sets out the preliminary framework for managing construction-related traffic impacts associated with the Cleeves Riverside Quarter development. It outlines the phased approach to construction, identifies key access routes, and proposes mitigation measures to ensure safe and efficient movement of vehicles, materials, and personnel throughout the site.

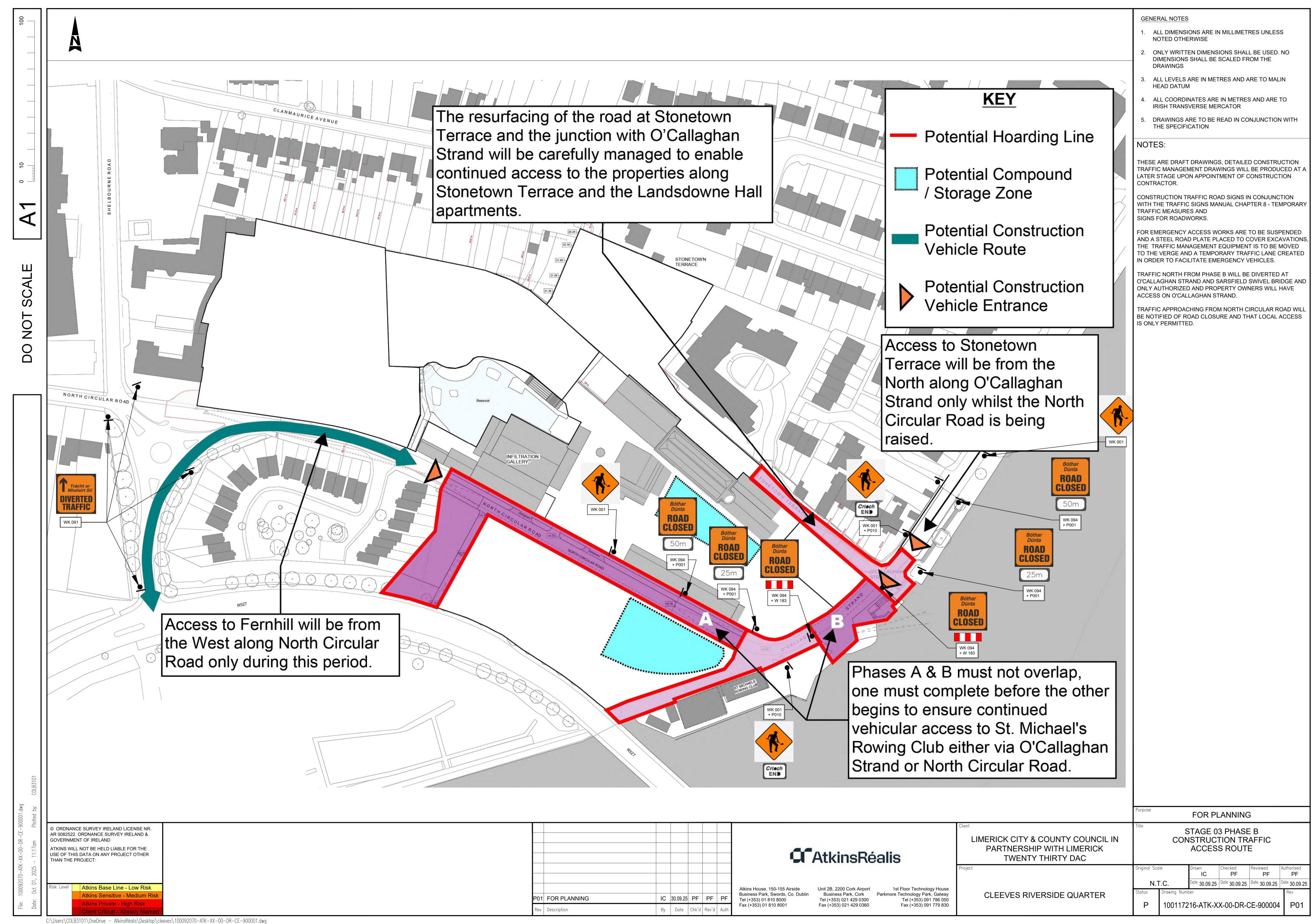
The development will be delivered in nine distinct stages between 2027 and 2030, beginning with ecological mitigation works and progressing through demolition, infrastructure upgrades, residential and public realm construction, and culminating in the delivery of a mobility hub. Each stage includes tailored traffic routing and compound arrangements, with flexibility built in to accommodate contractor-led adjustments.

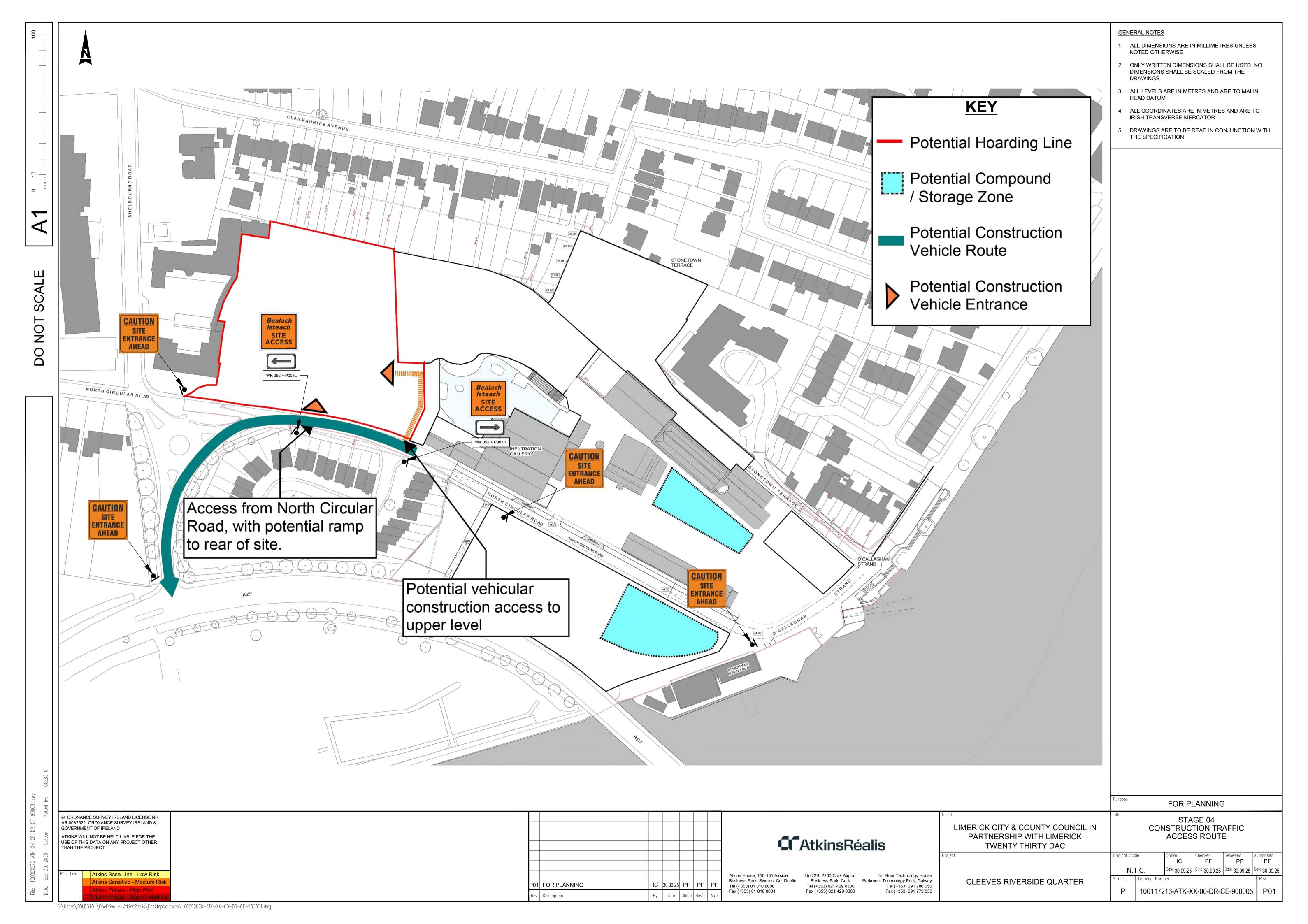
Traffic impacts have been assessed and are expected to be minimal, with a projected 2% increase in peak-hour flows at the Salesians Roundabout. Measures such as scheduled deliveries, controlled access points, road cleaning, and signage will be implemented to mitigate disruption to the surrounding community and road network.

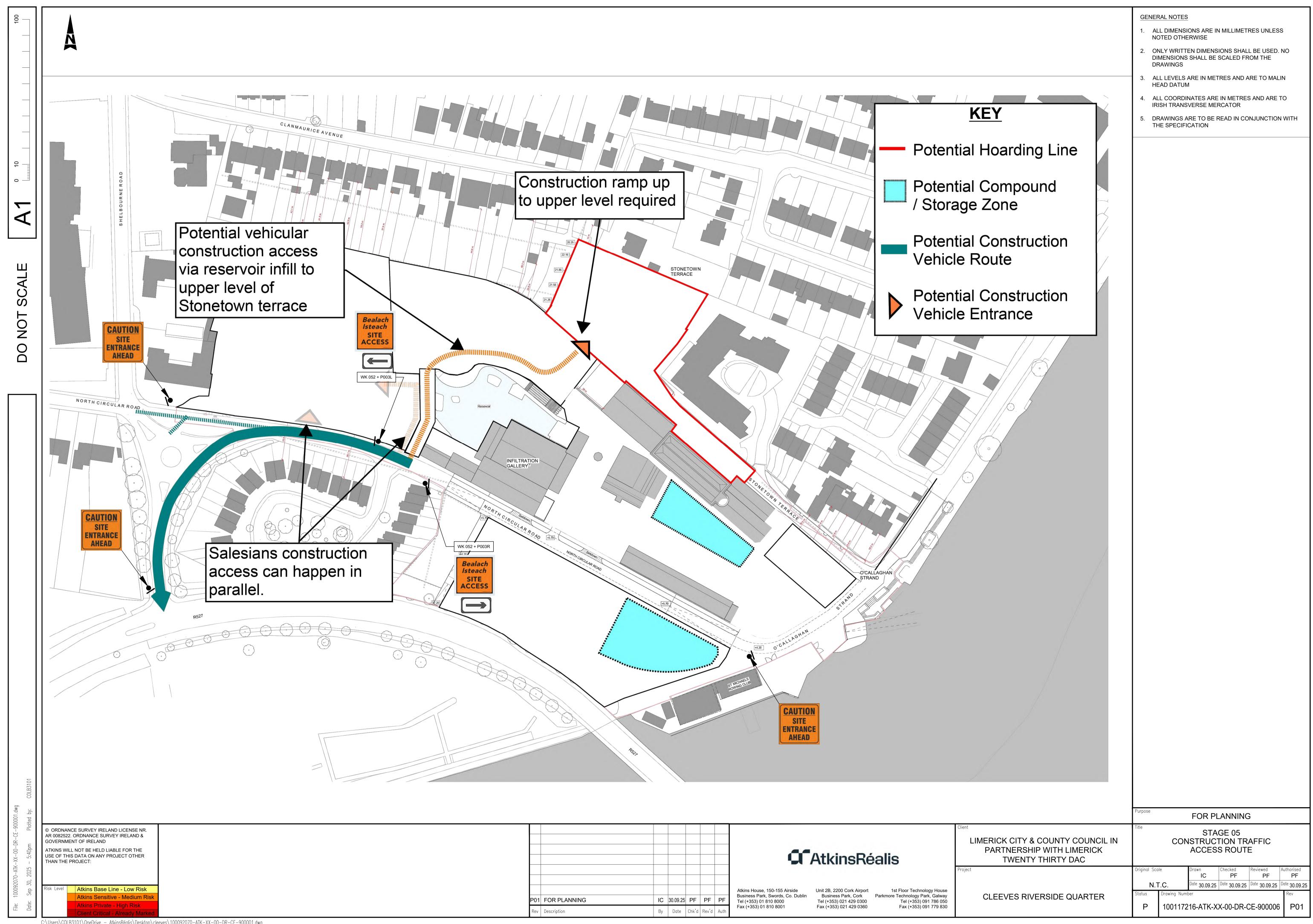

This OCTMP is a live document and will be refined into a Detailed Construction Traffic Management Plan (CTMP) by the appointed contractor in consultation with Limerick City & County Council and other stakeholders. The CTMP will ensure compliance with statutory requirements and support the safe, sustainable, and coordinated delivery of this transformative urban regeneration project.

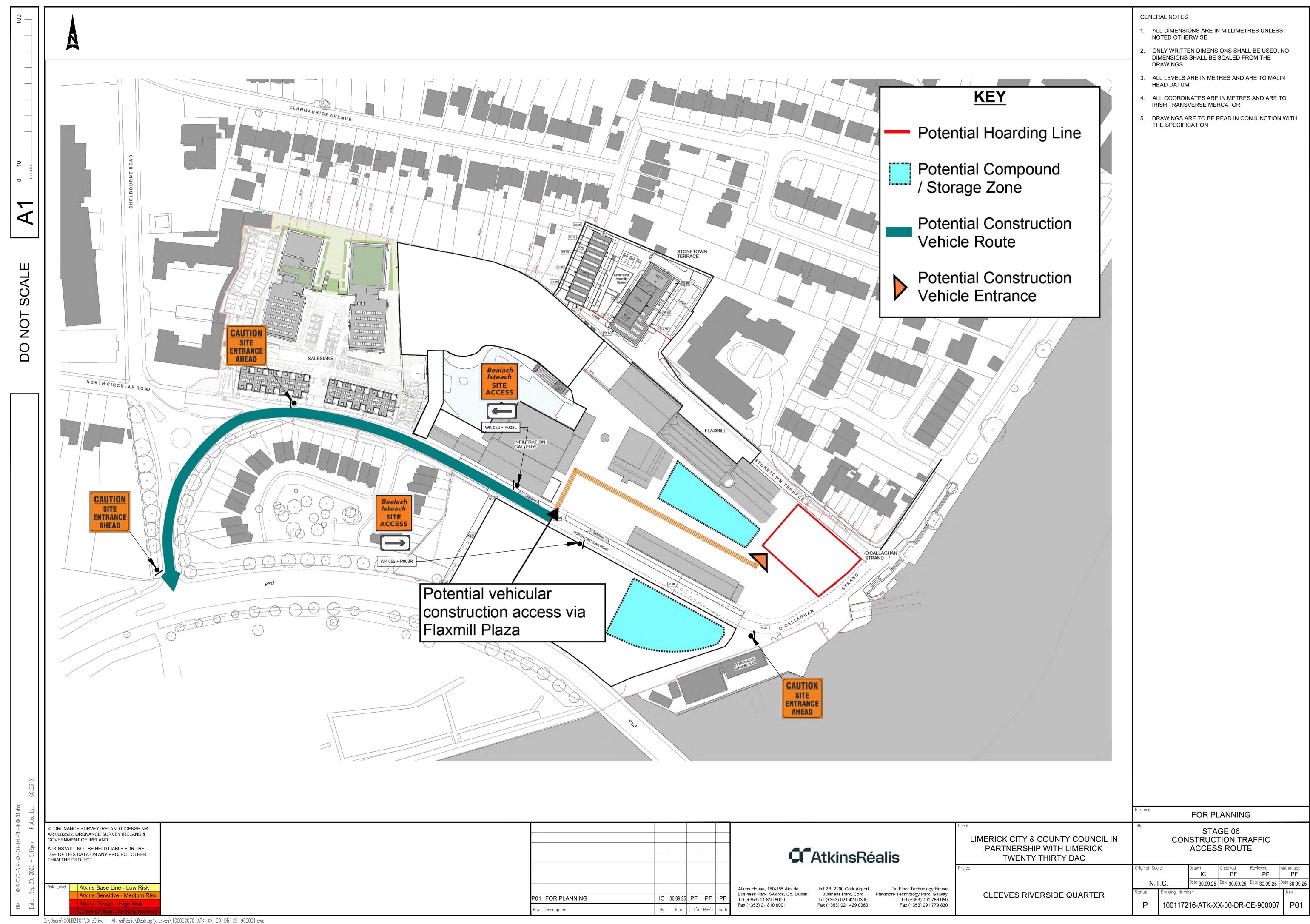


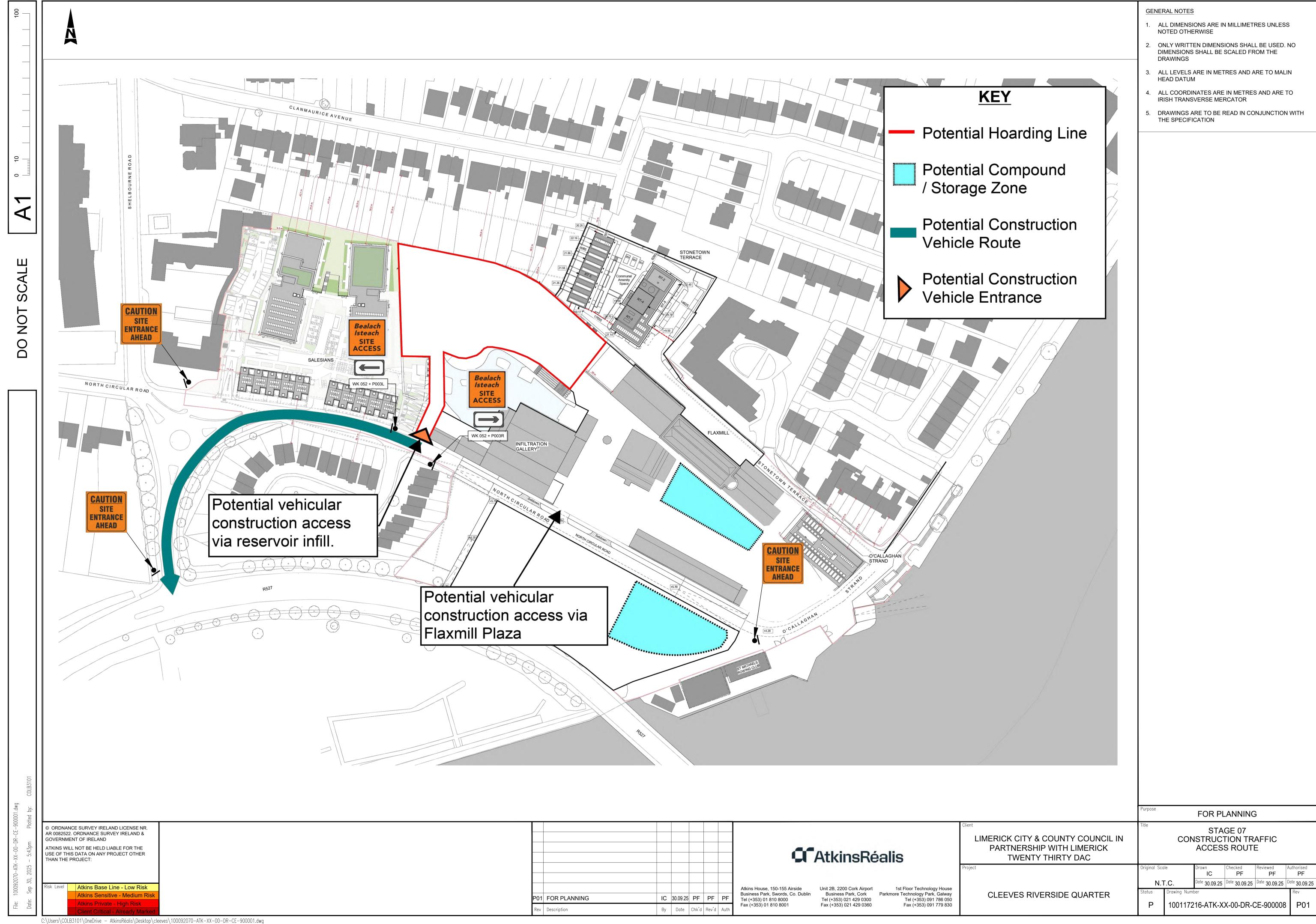

APPENDICES

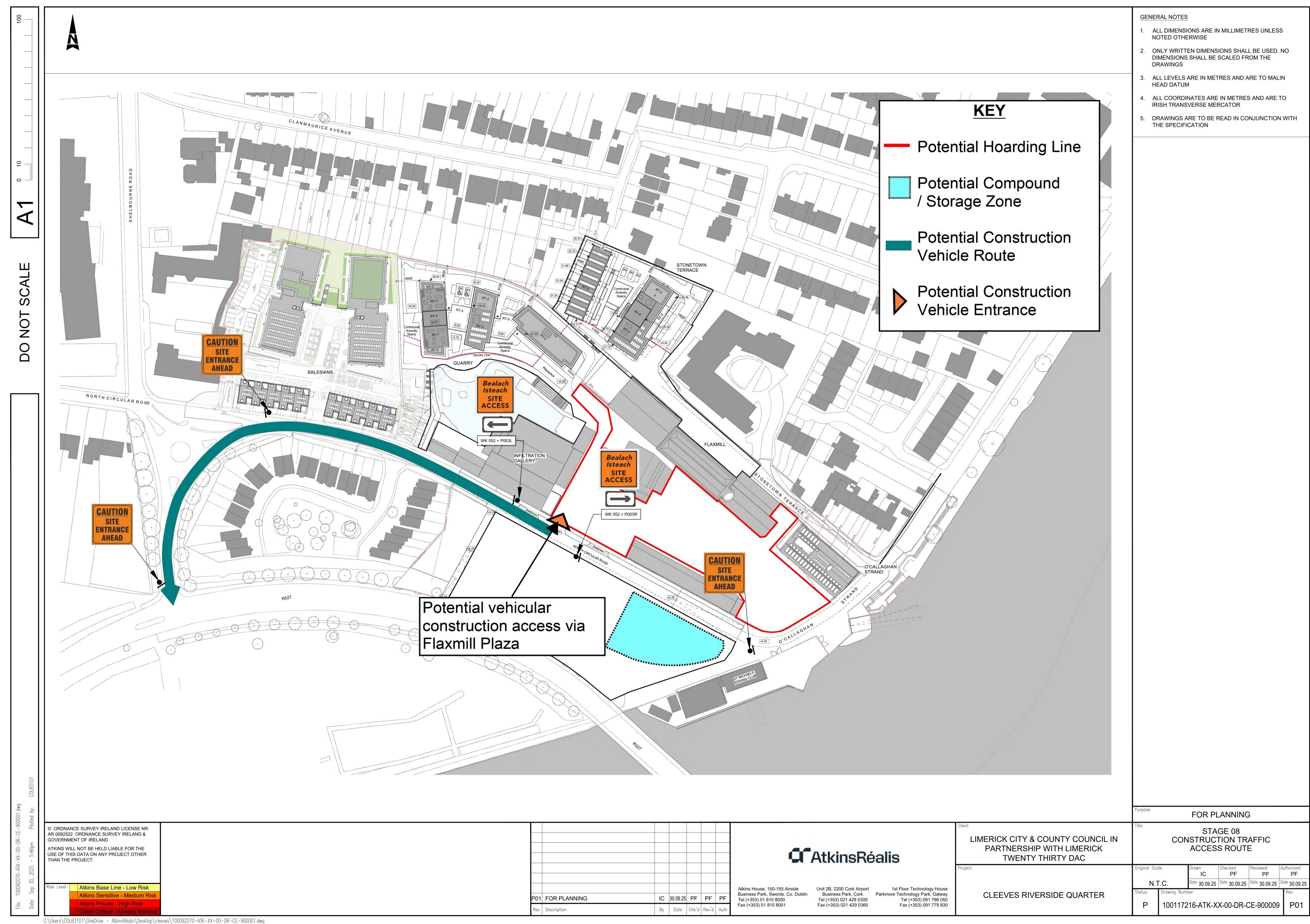

Appendix A. Construction Traffic Routing & Signage

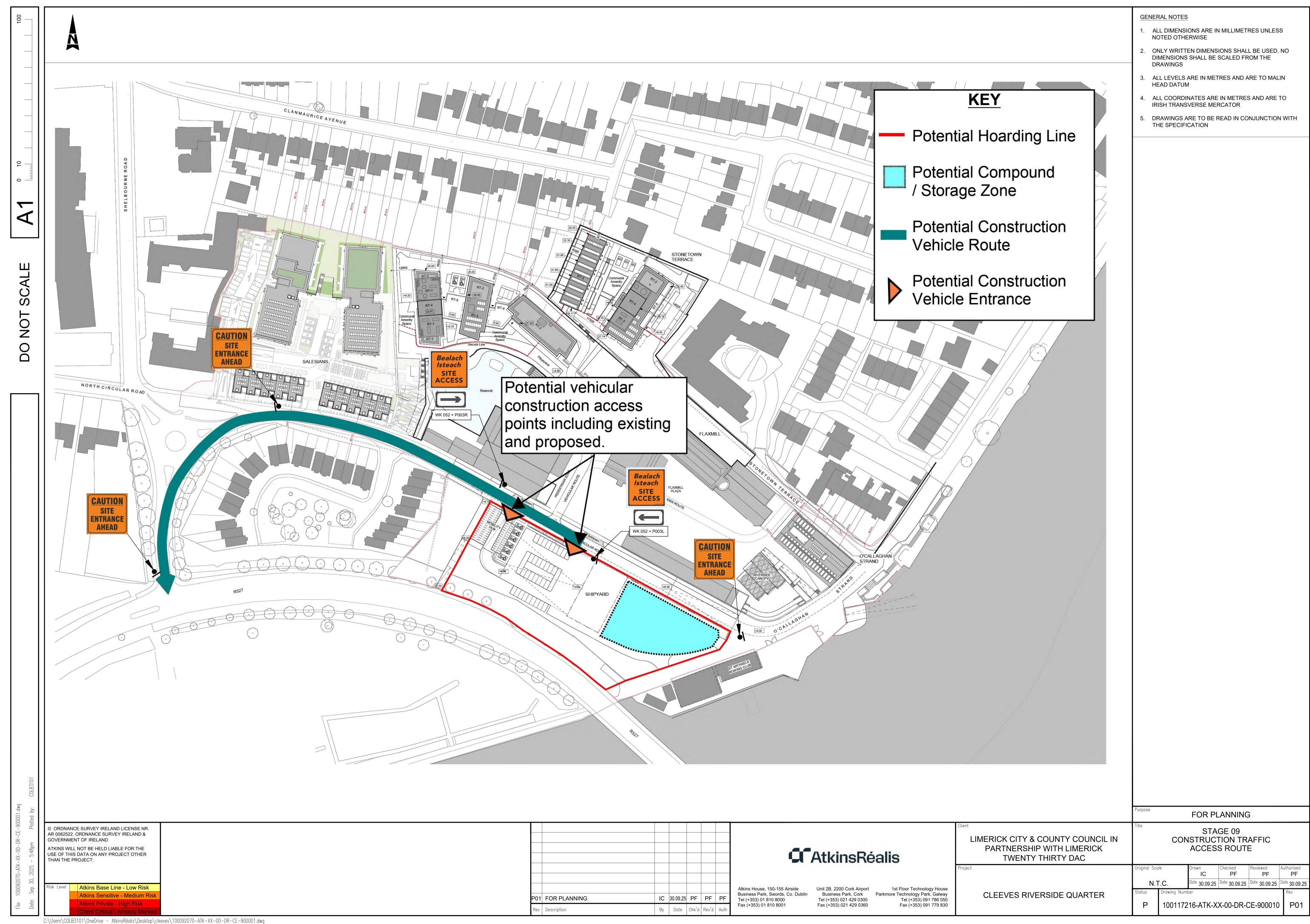












AtkinsRéalis

AtkinsRéalis Ireland Limited

150-155 Airside Business Park

Swords

Co. Dublin

K67 K5W4

© AtkinsRéalis Ireland Limited except where stated otherwise